Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories
- Autores
- Mercader, Andrew Gustavo; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The selection of an optimal set of molecular descriptors from a much greater pool of such regression variables is a crucial step in the development of QSAR and QSPR models. The aim of this work is to further improve this important selection process. For this reason three different alternatives for the initial steps of our recently developed enhanced replacement method (ERM) and replacement method (RM) are proposed. These approaches had previously proven to yield near optimal results with a much smaller number of linear regressions than the full search. The algorithms were tested on four different experimental data sets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that one of the new alternatives further improves the ERM, which has shown to be superior to genetic algorithms for the selection of an optimal set of molecular descriptors from a much greater pool. The new proposed alternative also improves the simpler and the lower computational demand algorithm RM.
Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
QSAR
QSPR
ERM
RM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101631
Ver los metadatos del registro completo
id |
CONICETDig_3382ab1adb0bfc101ae10409a994b53d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101631 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR TheoriesMercader, Andrew GustavoDuchowicz, Pablo RománFernández, Francisco MarceloCastro, Eduardo AlbertoQSARQSPRERMRMhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The selection of an optimal set of molecular descriptors from a much greater pool of such regression variables is a crucial step in the development of QSAR and QSPR models. The aim of this work is to further improve this important selection process. For this reason three different alternatives for the initial steps of our recently developed enhanced replacement method (ERM) and replacement method (RM) are proposed. These approaches had previously proven to yield near optimal results with a much smaller number of linear regressions than the full search. The algorithms were tested on four different experimental data sets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that one of the new alternatives further improves the ERM, which has shown to be superior to genetic algorithms for the selection of an optimal set of molecular descriptors from a much greater pool. The new proposed alternative also improves the simpler and the lower computational demand algorithm RM.Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaAmerican Chemical Society2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101631Mercader, Andrew Gustavo; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto; Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories; American Chemical Society; Journal of Chemical Information and Modeling; 51; 7; 4-2011; 1575-15811549-9596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ci200079binfo:eu-repo/semantics/altIdentifier/doi/10.1021/ci200079binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:07Zoai:ri.conicet.gov.ar:11336/101631instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:07.906CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories |
title |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories |
spellingShingle |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories Mercader, Andrew Gustavo QSAR QSPR ERM RM |
title_short |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories |
title_full |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories |
title_fullStr |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories |
title_full_unstemmed |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories |
title_sort |
Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories |
dc.creator.none.fl_str_mv |
Mercader, Andrew Gustavo Duchowicz, Pablo Román Fernández, Francisco Marcelo Castro, Eduardo Alberto |
author |
Mercader, Andrew Gustavo |
author_facet |
Mercader, Andrew Gustavo Duchowicz, Pablo Román Fernández, Francisco Marcelo Castro, Eduardo Alberto |
author_role |
author |
author2 |
Duchowicz, Pablo Román Fernández, Francisco Marcelo Castro, Eduardo Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
QSAR QSPR ERM RM |
topic |
QSAR QSPR ERM RM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The selection of an optimal set of molecular descriptors from a much greater pool of such regression variables is a crucial step in the development of QSAR and QSPR models. The aim of this work is to further improve this important selection process. For this reason three different alternatives for the initial steps of our recently developed enhanced replacement method (ERM) and replacement method (RM) are proposed. These approaches had previously proven to yield near optimal results with a much smaller number of linear regressions than the full search. The algorithms were tested on four different experimental data sets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that one of the new alternatives further improves the ERM, which has shown to be superior to genetic algorithms for the selection of an optimal set of molecular descriptors from a much greater pool. The new proposed alternative also improves the simpler and the lower computational demand algorithm RM. Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
The selection of an optimal set of molecular descriptors from a much greater pool of such regression variables is a crucial step in the development of QSAR and QSPR models. The aim of this work is to further improve this important selection process. For this reason three different alternatives for the initial steps of our recently developed enhanced replacement method (ERM) and replacement method (RM) are proposed. These approaches had previously proven to yield near optimal results with a much smaller number of linear regressions than the full search. The algorithms were tested on four different experimental data sets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that one of the new alternatives further improves the ERM, which has shown to be superior to genetic algorithms for the selection of an optimal set of molecular descriptors from a much greater pool. The new proposed alternative also improves the simpler and the lower computational demand algorithm RM. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101631 Mercader, Andrew Gustavo; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto; Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories; American Chemical Society; Journal of Chemical Information and Modeling; 51; 7; 4-2011; 1575-1581 1549-9596 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101631 |
identifier_str_mv |
Mercader, Andrew Gustavo; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto; Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories; American Chemical Society; Journal of Chemical Information and Modeling; 51; 7; 4-2011; 1575-1581 1549-9596 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ci200079b info:eu-repo/semantics/altIdentifier/doi/10.1021/ci200079b |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269990569377792 |
score |
13.13397 |