Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties
- Autores
- Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper addresses the problem of adaptive neural sliding mode control for a class of multi-input multi-output nonlinear system. The control strategy is an inverse nonlinear controller combined with an adaptive neural network with sliding mode control using an on-line learning algorithm. The adaptive neural network with sliding mode control acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations in its entire structure (kinematics and dynamics). The controllers are obtained by using Lyapunov's stability theory. Experimental results of a case study show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de San Juan; Argentina. Gobierno de la Provincia de San Juan. Secretaria de Estado de Ciencia, Tecnología e Innovación. Subsecretaria de Promoción de la Actividad Científica; Argentina
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina - Materia
-
Nonlinear Systems
Neural Networks
Mimo Systems
Sliding Mode Control
Radial Basis Functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25357
Ver los metadatos del registro completo
id |
CONICETDig_a320bc926172d232c3d0506da6414f01 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25357 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertaintiesRossomando, Francisco GuidoSoria, Carlos MiguelCarelli Albarracin, Ricardo OscarNonlinear SystemsNeural NetworksMimo SystemsSliding Mode ControlRadial Basis Functionshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper addresses the problem of adaptive neural sliding mode control for a class of multi-input multi-output nonlinear system. The control strategy is an inverse nonlinear controller combined with an adaptive neural network with sliding mode control using an on-line learning algorithm. The adaptive neural network with sliding mode control acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations in its entire structure (kinematics and dynamics). The controllers are obtained by using Lyapunov's stability theory. Experimental results of a case study show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de San Juan; Argentina. Gobierno de la Provincia de San Juan. Secretaria de Estado de Ciencia, Tecnología e Innovación. Subsecretaria de Promoción de la Actividad Científica; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaElsevier2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25357Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties; Elsevier; Engineering Applications Of Artificial Intelligence; 26; 10; 9-2013; 2251-22590952-1976CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0952197613001656info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engappai.2013.08.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:14Zoai:ri.conicet.gov.ar:11336/25357instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:14.362CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties |
title |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties |
spellingShingle |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties Rossomando, Francisco Guido Nonlinear Systems Neural Networks Mimo Systems Sliding Mode Control Radial Basis Functions |
title_short |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties |
title_full |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties |
title_fullStr |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties |
title_full_unstemmed |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties |
title_sort |
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties |
dc.creator.none.fl_str_mv |
Rossomando, Francisco Guido Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author |
Rossomando, Francisco Guido |
author_facet |
Rossomando, Francisco Guido Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Nonlinear Systems Neural Networks Mimo Systems Sliding Mode Control Radial Basis Functions |
topic |
Nonlinear Systems Neural Networks Mimo Systems Sliding Mode Control Radial Basis Functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper addresses the problem of adaptive neural sliding mode control for a class of multi-input multi-output nonlinear system. The control strategy is an inverse nonlinear controller combined with an adaptive neural network with sliding mode control using an on-line learning algorithm. The adaptive neural network with sliding mode control acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations in its entire structure (kinematics and dynamics). The controllers are obtained by using Lyapunov's stability theory. Experimental results of a case study show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties. Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de San Juan; Argentina. Gobierno de la Provincia de San Juan. Secretaria de Estado de Ciencia, Tecnología e Innovación. Subsecretaria de Promoción de la Actividad Científica; Argentina Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina |
description |
This paper addresses the problem of adaptive neural sliding mode control for a class of multi-input multi-output nonlinear system. The control strategy is an inverse nonlinear controller combined with an adaptive neural network with sliding mode control using an on-line learning algorithm. The adaptive neural network with sliding mode control acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations in its entire structure (kinematics and dynamics). The controllers are obtained by using Lyapunov's stability theory. Experimental results of a case study show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25357 Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties; Elsevier; Engineering Applications Of Artificial Intelligence; 26; 10; 9-2013; 2251-2259 0952-1976 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25357 |
identifier_str_mv |
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties; Elsevier; Engineering Applications Of Artificial Intelligence; 26; 10; 9-2013; 2251-2259 0952-1976 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0952197613001656 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engappai.2013.08.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613134587789312 |
score |
13.070432 |