Strongly isospectral manifolds with nonisomorphic cohomology rings
- Autores
- Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For any n≥7n≥7, k≥3k≥3, we give pairs of compact flat nn-manifolds MM, M′M′ with holonomy groups Zk2Z2k, that are strongly isospectral, hence isospectral on pp-forms for all values of pp, having nonisomorphic cohomology rings. Moreover, if nn is even, MM is Kähler while M′M′ is not. Furthermore, with the help of a computer program we show the existence of large Sunada isospectral families; for instance, for n=24n=24 and k=3k=3 there is a family of eight compact flat manifolds (four of them Kähler) having very different cohomology rings. In particular, the cardinalities of the sets of primitive forms are different for all manifolds
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
Fil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina - Materia
-
isospectral
cohomology rings
primitive forms
flat manifolds - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11346
Ver los metadatos del registro completo
id |
CONICETDig_a29eb873670544338fa3a6909f673016 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11346 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Strongly isospectral manifolds with nonisomorphic cohomology ringsLauret, Emilio AgustinMiatello, Roberto JorgeRossetti, Juan Pabloisospectralcohomology ringsprimitive formsflat manifoldshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For any n≥7n≥7, k≥3k≥3, we give pairs of compact flat nn-manifolds MM, M′M′ with holonomy groups Zk2Z2k, that are strongly isospectral, hence isospectral on pp-forms for all values of pp, having nonisomorphic cohomology rings. Moreover, if nn is even, MM is Kähler while M′M′ is not. Furthermore, with the help of a computer program we show the existence of large Sunada isospectral families; for instance, for n=24n=24 and k=3k=3 there is a family of eight compact flat manifolds (four of them Kähler) having very different cohomology rings. In particular, the cardinalities of the sets of primitive forms are different for all manifoldsFil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaFil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaFil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaEuropean Mathematical Society2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/11346Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Strongly isospectral manifolds with nonisomorphic cohomology rings; European Mathematical Society; Revista Matematica Iberoamericana; 29; 4; 12-2013; 611-6340213-2230enginfo:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=29&iss=2&rank=8info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.4171/RMI/732info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1103.0249v2.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:17Zoai:ri.conicet.gov.ar:11336/11346instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:17.724CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Strongly isospectral manifolds with nonisomorphic cohomology rings |
title |
Strongly isospectral manifolds with nonisomorphic cohomology rings |
spellingShingle |
Strongly isospectral manifolds with nonisomorphic cohomology rings Lauret, Emilio Agustin isospectral cohomology rings primitive forms flat manifolds |
title_short |
Strongly isospectral manifolds with nonisomorphic cohomology rings |
title_full |
Strongly isospectral manifolds with nonisomorphic cohomology rings |
title_fullStr |
Strongly isospectral manifolds with nonisomorphic cohomology rings |
title_full_unstemmed |
Strongly isospectral manifolds with nonisomorphic cohomology rings |
title_sort |
Strongly isospectral manifolds with nonisomorphic cohomology rings |
dc.creator.none.fl_str_mv |
Lauret, Emilio Agustin Miatello, Roberto Jorge Rossetti, Juan Pablo |
author |
Lauret, Emilio Agustin |
author_facet |
Lauret, Emilio Agustin Miatello, Roberto Jorge Rossetti, Juan Pablo |
author_role |
author |
author2 |
Miatello, Roberto Jorge Rossetti, Juan Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
isospectral cohomology rings primitive forms flat manifolds |
topic |
isospectral cohomology rings primitive forms flat manifolds |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For any n≥7n≥7, k≥3k≥3, we give pairs of compact flat nn-manifolds MM, M′M′ with holonomy groups Zk2Z2k, that are strongly isospectral, hence isospectral on pp-forms for all values of pp, having nonisomorphic cohomology rings. Moreover, if nn is even, MM is Kähler while M′M′ is not. Furthermore, with the help of a computer program we show the existence of large Sunada isospectral families; for instance, for n=24n=24 and k=3k=3 there is a family of eight compact flat manifolds (four of them Kähler) having very different cohomology rings. In particular, the cardinalities of the sets of primitive forms are different for all manifolds Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina Fil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina |
description |
For any n≥7n≥7, k≥3k≥3, we give pairs of compact flat nn-manifolds MM, M′M′ with holonomy groups Zk2Z2k, that are strongly isospectral, hence isospectral on pp-forms for all values of pp, having nonisomorphic cohomology rings. Moreover, if nn is even, MM is Kähler while M′M′ is not. Furthermore, with the help of a computer program we show the existence of large Sunada isospectral families; for instance, for n=24n=24 and k=3k=3 there is a family of eight compact flat manifolds (four of them Kähler) having very different cohomology rings. In particular, the cardinalities of the sets of primitive forms are different for all manifolds |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11346 Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Strongly isospectral manifolds with nonisomorphic cohomology rings; European Mathematical Society; Revista Matematica Iberoamericana; 29; 4; 12-2013; 611-634 0213-2230 |
url |
http://hdl.handle.net/11336/11346 |
identifier_str_mv |
Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Strongly isospectral manifolds with nonisomorphic cohomology rings; European Mathematical Society; Revista Matematica Iberoamericana; 29; 4; 12-2013; 611-634 0213-2230 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=29&iss=2&rank=8 info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.4171/RMI/732 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1103.0249v2.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269997338984448 |
score |
13.13397 |