Z_2^k-manifolds are isospectral on forms
- Autores
- Miatello, Roberto Jorge; Podesta, Ricardo Alberto; Rossetti, Juan Pablo
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain a simple formula for the multiplicity of eigenvalues of the Hodge-Laplace operator acting on sections of the full exterior bundle over an arbitrary compact flat Riemannian n-manifold M with holonomy group Z_2^k, 1 ≤ k ≤ n − 1. This formula implies that any two such manifolds having isospectral lattices of translations are isospectral with respect to this full Laplacian . As a consequence, we construct a large family of pairwise isospectral (with respect to the full Laplacian) and nonhomeomorphic n-manifolds of cardinality greater than 2^{(n−1)(n−2)/2}.
Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Podesta, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
FLAT MANIFOLD
ISOSPECTRALITY
FORMS
Z_2^k-MANIFOLDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/248364
Ver los metadatos del registro completo
id |
CONICETDig_60f2fa959e00fabd502fd89680a40ed7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/248364 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Z_2^k-manifolds are isospectral on formsMiatello, Roberto JorgePodesta, Ricardo AlbertoRossetti, Juan PabloFLAT MANIFOLDISOSPECTRALITYFORMSZ_2^k-MANIFOLDShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain a simple formula for the multiplicity of eigenvalues of the Hodge-Laplace operator acting on sections of the full exterior bundle over an arbitrary compact flat Riemannian n-manifold M with holonomy group Z_2^k, 1 ≤ k ≤ n − 1. This formula implies that any two such manifolds having isospectral lattices of translations are isospectral with respect to this full Laplacian . As a consequence, we construct a large family of pairwise isospectral (with respect to the full Laplacian) and nonhomeomorphic n-manifolds of cardinality greater than 2^{(n−1)(n−2)/2}.Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Podesta, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2008-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248364Miatello, Roberto Jorge; Podesta, Ricardo Alberto; Rossetti, Juan Pablo; Z_2^k-manifolds are isospectral on forms; Springer; Mathematische Zeitschrift; 258; 2; 1-2008; 301-3170025-5874CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0408285info:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-007-0171-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-007-0171-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:25Zoai:ri.conicet.gov.ar:11336/248364instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:25.821CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Z_2^k-manifolds are isospectral on forms |
title |
Z_2^k-manifolds are isospectral on forms |
spellingShingle |
Z_2^k-manifolds are isospectral on forms Miatello, Roberto Jorge FLAT MANIFOLD ISOSPECTRALITY FORMS Z_2^k-MANIFOLDS |
title_short |
Z_2^k-manifolds are isospectral on forms |
title_full |
Z_2^k-manifolds are isospectral on forms |
title_fullStr |
Z_2^k-manifolds are isospectral on forms |
title_full_unstemmed |
Z_2^k-manifolds are isospectral on forms |
title_sort |
Z_2^k-manifolds are isospectral on forms |
dc.creator.none.fl_str_mv |
Miatello, Roberto Jorge Podesta, Ricardo Alberto Rossetti, Juan Pablo |
author |
Miatello, Roberto Jorge |
author_facet |
Miatello, Roberto Jorge Podesta, Ricardo Alberto Rossetti, Juan Pablo |
author_role |
author |
author2 |
Podesta, Ricardo Alberto Rossetti, Juan Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FLAT MANIFOLD ISOSPECTRALITY FORMS Z_2^k-MANIFOLDS |
topic |
FLAT MANIFOLD ISOSPECTRALITY FORMS Z_2^k-MANIFOLDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain a simple formula for the multiplicity of eigenvalues of the Hodge-Laplace operator acting on sections of the full exterior bundle over an arbitrary compact flat Riemannian n-manifold M with holonomy group Z_2^k, 1 ≤ k ≤ n − 1. This formula implies that any two such manifolds having isospectral lattices of translations are isospectral with respect to this full Laplacian . As a consequence, we construct a large family of pairwise isospectral (with respect to the full Laplacian) and nonhomeomorphic n-manifolds of cardinality greater than 2^{(n−1)(n−2)/2}. Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Podesta, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We obtain a simple formula for the multiplicity of eigenvalues of the Hodge-Laplace operator acting on sections of the full exterior bundle over an arbitrary compact flat Riemannian n-manifold M with holonomy group Z_2^k, 1 ≤ k ≤ n − 1. This formula implies that any two such manifolds having isospectral lattices of translations are isospectral with respect to this full Laplacian . As a consequence, we construct a large family of pairwise isospectral (with respect to the full Laplacian) and nonhomeomorphic n-manifolds of cardinality greater than 2^{(n−1)(n−2)/2}. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/248364 Miatello, Roberto Jorge; Podesta, Ricardo Alberto; Rossetti, Juan Pablo; Z_2^k-manifolds are isospectral on forms; Springer; Mathematische Zeitschrift; 258; 2; 1-2008; 301-317 0025-5874 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/248364 |
identifier_str_mv |
Miatello, Roberto Jorge; Podesta, Ricardo Alberto; Rossetti, Juan Pablo; Z_2^k-manifolds are isospectral on forms; Springer; Mathematische Zeitschrift; 258; 2; 1-2008; 301-317 0025-5874 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0408285 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-007-0171-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-007-0171-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268665860325376 |
score |
13.13397 |