DADA: data assimilation for the detection and attribution of weather and climate-related events
- Autores
- Hannart, Alexis; Carrasi, A.; Bocquet, M.; Ghil, M.; Naveau, P.; Pulido, M.; Ruiz, Juan Jose; Tandeo, P.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe a new approach that allows for systematic causal attribution of weather and climate-related events, in near-real time. The method is designed so as to facilitate its implementation at meteorological centers by relying on data and methods that are routinely available when numerically forecasting the weather. We thus show that causal attribution can be obtained as a by-product of data assimilation procedures run on a daily basis to update numerical weather prediction (NWP) models with new atmospheric observations; hence, the proposed methodology can take advantage of the powerful computational and observational capacity of weather forecasting centers. We explain the theoretical rationale of this approach and sketch the most prominent features of a “data assimilation–based detection and attribution” (DADA) procedure. The proposal is illustrated in the context of the classical three-variable Lorenz model with additional forcing. The paper concludes by raising several theoretical and practical questions that need to be addressed to make the proposal operational within NWP centers.
Fil: Hannart, Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Carrasi, A.. Mohn-Sverdrup Center; Noruega
Fil: Bocquet, M.. Université Paris-Est; Francia
Fil: Ghil, M.. Ecole Normale Supérieure; Francia. University of California at Los Angeles; Estados Unidos
Fil: Naveau, P.. Centre National de la Recherche Scientifique; Francia
Fil: Pulido, M.. Universidad Nacional del Nordeste; Argentina
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Tandeo, P.. Télécom Bretagne; Francia - Materia
-
Data assimilation
Detection and attribution
Climate change
Casualty theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17809
Ver los metadatos del registro completo
id |
CONICETDig_a1a8eb032b35afe403b71edb7cbfcecf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17809 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
DADA: data assimilation for the detection and attribution of weather and climate-related eventsHannart, AlexisCarrasi, A.Bocquet, M.Ghil, M.Naveau, P.Pulido, M.Ruiz, Juan JoseTandeo, P.Data assimilationDetection and attributionClimate changeCasualty theoryhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We describe a new approach that allows for systematic causal attribution of weather and climate-related events, in near-real time. The method is designed so as to facilitate its implementation at meteorological centers by relying on data and methods that are routinely available when numerically forecasting the weather. We thus show that causal attribution can be obtained as a by-product of data assimilation procedures run on a daily basis to update numerical weather prediction (NWP) models with new atmospheric observations; hence, the proposed methodology can take advantage of the powerful computational and observational capacity of weather forecasting centers. We explain the theoretical rationale of this approach and sketch the most prominent features of a “data assimilation–based detection and attribution” (DADA) procedure. The proposal is illustrated in the context of the classical three-variable Lorenz model with additional forcing. The paper concludes by raising several theoretical and practical questions that need to be addressed to make the proposal operational within NWP centers.Fil: Hannart, Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Carrasi, A.. Mohn-Sverdrup Center; NoruegaFil: Bocquet, M.. Université Paris-Est; FranciaFil: Ghil, M.. Ecole Normale Supérieure; Francia. University of California at Los Angeles; Estados UnidosFil: Naveau, P.. Centre National de la Recherche Scientifique; FranciaFil: Pulido, M.. Universidad Nacional del Nordeste; ArgentinaFil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Tandeo, P.. Télécom Bretagne; FranciaSpringer2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17809Hannart, Alexis; Carrasi, A.; Bocquet, M.; Ghil, M.; Naveau, P.; et al.; DADA: data assimilation for the detection and attribution of weather and climate-related events; Springer; Climatic Change; 136; 2; 5-2016; 155-1740165-00091573-1480enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10584-016-1595-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10584-016-1595-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:47Zoai:ri.conicet.gov.ar:11336/17809instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:47.299CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
DADA: data assimilation for the detection and attribution of weather and climate-related events |
title |
DADA: data assimilation for the detection and attribution of weather and climate-related events |
spellingShingle |
DADA: data assimilation for the detection and attribution of weather and climate-related events Hannart, Alexis Data assimilation Detection and attribution Climate change Casualty theory |
title_short |
DADA: data assimilation for the detection and attribution of weather and climate-related events |
title_full |
DADA: data assimilation for the detection and attribution of weather and climate-related events |
title_fullStr |
DADA: data assimilation for the detection and attribution of weather and climate-related events |
title_full_unstemmed |
DADA: data assimilation for the detection and attribution of weather and climate-related events |
title_sort |
DADA: data assimilation for the detection and attribution of weather and climate-related events |
dc.creator.none.fl_str_mv |
Hannart, Alexis Carrasi, A. Bocquet, M. Ghil, M. Naveau, P. Pulido, M. Ruiz, Juan Jose Tandeo, P. |
author |
Hannart, Alexis |
author_facet |
Hannart, Alexis Carrasi, A. Bocquet, M. Ghil, M. Naveau, P. Pulido, M. Ruiz, Juan Jose Tandeo, P. |
author_role |
author |
author2 |
Carrasi, A. Bocquet, M. Ghil, M. Naveau, P. Pulido, M. Ruiz, Juan Jose Tandeo, P. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Data assimilation Detection and attribution Climate change Casualty theory |
topic |
Data assimilation Detection and attribution Climate change Casualty theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We describe a new approach that allows for systematic causal attribution of weather and climate-related events, in near-real time. The method is designed so as to facilitate its implementation at meteorological centers by relying on data and methods that are routinely available when numerically forecasting the weather. We thus show that causal attribution can be obtained as a by-product of data assimilation procedures run on a daily basis to update numerical weather prediction (NWP) models with new atmospheric observations; hence, the proposed methodology can take advantage of the powerful computational and observational capacity of weather forecasting centers. We explain the theoretical rationale of this approach and sketch the most prominent features of a “data assimilation–based detection and attribution” (DADA) procedure. The proposal is illustrated in the context of the classical three-variable Lorenz model with additional forcing. The paper concludes by raising several theoretical and practical questions that need to be addressed to make the proposal operational within NWP centers. Fil: Hannart, Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina Fil: Carrasi, A.. Mohn-Sverdrup Center; Noruega Fil: Bocquet, M.. Université Paris-Est; Francia Fil: Ghil, M.. Ecole Normale Supérieure; Francia. University of California at Los Angeles; Estados Unidos Fil: Naveau, P.. Centre National de la Recherche Scientifique; Francia Fil: Pulido, M.. Universidad Nacional del Nordeste; Argentina Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina Fil: Tandeo, P.. Télécom Bretagne; Francia |
description |
We describe a new approach that allows for systematic causal attribution of weather and climate-related events, in near-real time. The method is designed so as to facilitate its implementation at meteorological centers by relying on data and methods that are routinely available when numerically forecasting the weather. We thus show that causal attribution can be obtained as a by-product of data assimilation procedures run on a daily basis to update numerical weather prediction (NWP) models with new atmospheric observations; hence, the proposed methodology can take advantage of the powerful computational and observational capacity of weather forecasting centers. We explain the theoretical rationale of this approach and sketch the most prominent features of a “data assimilation–based detection and attribution” (DADA) procedure. The proposal is illustrated in the context of the classical three-variable Lorenz model with additional forcing. The paper concludes by raising several theoretical and practical questions that need to be addressed to make the proposal operational within NWP centers. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17809 Hannart, Alexis; Carrasi, A.; Bocquet, M.; Ghil, M.; Naveau, P.; et al.; DADA: data assimilation for the detection and attribution of weather and climate-related events; Springer; Climatic Change; 136; 2; 5-2016; 155-174 0165-0009 1573-1480 |
url |
http://hdl.handle.net/11336/17809 |
identifier_str_mv |
Hannart, Alexis; Carrasi, A.; Bocquet, M.; Ghil, M.; Naveau, P.; et al.; DADA: data assimilation for the detection and attribution of weather and climate-related events; Springer; Climatic Change; 136; 2; 5-2016; 155-174 0165-0009 1573-1480 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10584-016-1595-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10584-016-1595-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614522458865664 |
score |
13.070432 |