Tensor decompositions for signal processing applications: from two-way to multiway component analysis

Autores
Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar Federico; Zhou, Guoxu; Zhao, Qibin; De Lathauwer, Lieven
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile multi-way data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to find more general latent components in the data than matrix-based methods, and to have great flexibility in the choice of constraints that match data properties. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We also cover computational aspects and show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the blessings of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these blessings also extend to vector/matrix data through tensorization.
Fil: Cichocki, Andrzej. Riken Brain Science Institute; Japón
Fil: Mandic, Danilo P.. Imperial College London; Reino Unido
Fil: Phan, Anh Huy. Riken Brain Science Institute; Japón
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina
Fil: Zhou, Guoxu . Riken Brain Science Institute; Japón
Fil: Zhao, Qibin. Riken Brain Science Institute; Japón
Fil: De Lathauwer, Lieven. Katholikie Universiteit Leuven; Bélgica
Materia
Tensor decompositions
Component analysis
Signal processing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5905

id CONICETDig_9ec00484733b8bee6369778b01510467
oai_identifier_str oai:ri.conicet.gov.ar:11336/5905
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tensor decompositions for signal processing applications: from two-way to multiway component analysisCichocki, AndrzejMandic, Danilo P.Phan, Anh HuyCaiafa, Cesar FedericoZhou, Guoxu Zhao, QibinDe Lathauwer, LievenTensor decompositionsComponent analysisSignal processinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile multi-way data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to find more general latent components in the data than matrix-based methods, and to have great flexibility in the choice of constraints that match data properties. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We also cover computational aspects and show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the blessings of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these blessings also extend to vector/matrix data through tensorization.Fil: Cichocki, Andrzej. Riken Brain Science Institute; JapónFil: Mandic, Danilo P.. Imperial College London; Reino UnidoFil: Phan, Anh Huy. Riken Brain Science Institute; JapónFil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: Zhou, Guoxu . Riken Brain Science Institute; JapónFil: Zhao, Qibin. Riken Brain Science Institute; JapónFil: De Lathauwer, Lieven. Katholikie Universiteit Leuven; BélgicaInstitute of Electrical and Electronics Engineers2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5905Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar Federico; Zhou, Guoxu ; et al.; Tensor decompositions for signal processing applications: from two-way to multiway component analysis; Institute of Electrical and Electronics Engineers; IEEE Signal Processing Magazine; 32; 2; 3-2015; 145-1631053-5888enginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7038247info:eu-repo/semantics/altIdentifier/doi/10.1109/MSP.2013.2297439info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1403.4462v1info:eu-repo/semantics/altIdentifier/arxiv/1403.4462v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:41:15Zoai:ri.conicet.gov.ar:11336/5905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:41:15.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tensor decompositions for signal processing applications: from two-way to multiway component analysis
title Tensor decompositions for signal processing applications: from two-way to multiway component analysis
spellingShingle Tensor decompositions for signal processing applications: from two-way to multiway component analysis
Cichocki, Andrzej
Tensor decompositions
Component analysis
Signal processing
title_short Tensor decompositions for signal processing applications: from two-way to multiway component analysis
title_full Tensor decompositions for signal processing applications: from two-way to multiway component analysis
title_fullStr Tensor decompositions for signal processing applications: from two-way to multiway component analysis
title_full_unstemmed Tensor decompositions for signal processing applications: from two-way to multiway component analysis
title_sort Tensor decompositions for signal processing applications: from two-way to multiway component analysis
dc.creator.none.fl_str_mv Cichocki, Andrzej
Mandic, Danilo P.
Phan, Anh Huy
Caiafa, Cesar Federico
Zhou, Guoxu
Zhao, Qibin
De Lathauwer, Lieven
author Cichocki, Andrzej
author_facet Cichocki, Andrzej
Mandic, Danilo P.
Phan, Anh Huy
Caiafa, Cesar Federico
Zhou, Guoxu
Zhao, Qibin
De Lathauwer, Lieven
author_role author
author2 Mandic, Danilo P.
Phan, Anh Huy
Caiafa, Cesar Federico
Zhou, Guoxu
Zhao, Qibin
De Lathauwer, Lieven
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Tensor decompositions
Component analysis
Signal processing
topic Tensor decompositions
Component analysis
Signal processing
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile multi-way data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to find more general latent components in the data than matrix-based methods, and to have great flexibility in the choice of constraints that match data properties. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We also cover computational aspects and show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the blessings of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these blessings also extend to vector/matrix data through tensorization.
Fil: Cichocki, Andrzej. Riken Brain Science Institute; Japón
Fil: Mandic, Danilo P.. Imperial College London; Reino Unido
Fil: Phan, Anh Huy. Riken Brain Science Institute; Japón
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina
Fil: Zhou, Guoxu . Riken Brain Science Institute; Japón
Fil: Zhao, Qibin. Riken Brain Science Institute; Japón
Fil: De Lathauwer, Lieven. Katholikie Universiteit Leuven; Bélgica
description The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile multi-way data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to find more general latent components in the data than matrix-based methods, and to have great flexibility in the choice of constraints that match data properties. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We also cover computational aspects and show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the blessings of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these blessings also extend to vector/matrix data through tensorization.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5905
Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar Federico; Zhou, Guoxu ; et al.; Tensor decompositions for signal processing applications: from two-way to multiway component analysis; Institute of Electrical and Electronics Engineers; IEEE Signal Processing Magazine; 32; 2; 3-2015; 145-163
1053-5888
url http://hdl.handle.net/11336/5905
identifier_str_mv Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar Federico; Zhou, Guoxu ; et al.; Tensor decompositions for signal processing applications: from two-way to multiway component analysis; Institute of Electrical and Electronics Engineers; IEEE Signal Processing Magazine; 32; 2; 3-2015; 145-163
1053-5888
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7038247
info:eu-repo/semantics/altIdentifier/doi/10.1109/MSP.2013.2297439
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1403.4462v1
info:eu-repo/semantics/altIdentifier/arxiv/1403.4462v1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606765021691904
score 13.001348