Tensor decompositions for signal processing applications: from two-way to multiway component analysis
- Autores
- Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar Federico; Zhou, Guoxu; Zhao, Qibin; De Lathauwer, Lieven
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile multi-way data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to find more general latent components in the data than matrix-based methods, and to have great flexibility in the choice of constraints that match data properties. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We also cover computational aspects and show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the blessings of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these blessings also extend to vector/matrix data through tensorization.
Fil: Cichocki, Andrzej. Riken Brain Science Institute; Japón
Fil: Mandic, Danilo P.. Imperial College London; Reino Unido
Fil: Phan, Anh Huy. Riken Brain Science Institute; Japón
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina
Fil: Zhou, Guoxu . Riken Brain Science Institute; Japón
Fil: Zhao, Qibin. Riken Brain Science Institute; Japón
Fil: De Lathauwer, Lieven. Katholikie Universiteit Leuven; Bélgica - Materia
-
Tensor decompositions
Component analysis
Signal processing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5905
Ver los metadatos del registro completo
id |
CONICETDig_9ec00484733b8bee6369778b01510467 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5905 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tensor decompositions for signal processing applications: from two-way to multiway component analysisCichocki, AndrzejMandic, Danilo P.Phan, Anh HuyCaiafa, Cesar FedericoZhou, Guoxu Zhao, QibinDe Lathauwer, LievenTensor decompositionsComponent analysisSignal processinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile multi-way data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to find more general latent components in the data than matrix-based methods, and to have great flexibility in the choice of constraints that match data properties. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We also cover computational aspects and show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the blessings of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these blessings also extend to vector/matrix data through tensorization.Fil: Cichocki, Andrzej. Riken Brain Science Institute; JapónFil: Mandic, Danilo P.. Imperial College London; Reino UnidoFil: Phan, Anh Huy. Riken Brain Science Institute; JapónFil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: Zhou, Guoxu . Riken Brain Science Institute; JapónFil: Zhao, Qibin. Riken Brain Science Institute; JapónFil: De Lathauwer, Lieven. Katholikie Universiteit Leuven; BélgicaInstitute of Electrical and Electronics Engineers2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5905Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar Federico; Zhou, Guoxu ; et al.; Tensor decompositions for signal processing applications: from two-way to multiway component analysis; Institute of Electrical and Electronics Engineers; IEEE Signal Processing Magazine; 32; 2; 3-2015; 145-1631053-5888enginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7038247info:eu-repo/semantics/altIdentifier/doi/10.1109/MSP.2013.2297439info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1403.4462v1info:eu-repo/semantics/altIdentifier/arxiv/1403.4462v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:41:15Zoai:ri.conicet.gov.ar:11336/5905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:41:15.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tensor decompositions for signal processing applications: from two-way to multiway component analysis |
title |
Tensor decompositions for signal processing applications: from two-way to multiway component analysis |
spellingShingle |
Tensor decompositions for signal processing applications: from two-way to multiway component analysis Cichocki, Andrzej Tensor decompositions Component analysis Signal processing |
title_short |
Tensor decompositions for signal processing applications: from two-way to multiway component analysis |
title_full |
Tensor decompositions for signal processing applications: from two-way to multiway component analysis |
title_fullStr |
Tensor decompositions for signal processing applications: from two-way to multiway component analysis |
title_full_unstemmed |
Tensor decompositions for signal processing applications: from two-way to multiway component analysis |
title_sort |
Tensor decompositions for signal processing applications: from two-way to multiway component analysis |
dc.creator.none.fl_str_mv |
Cichocki, Andrzej Mandic, Danilo P. Phan, Anh Huy Caiafa, Cesar Federico Zhou, Guoxu Zhao, Qibin De Lathauwer, Lieven |
author |
Cichocki, Andrzej |
author_facet |
Cichocki, Andrzej Mandic, Danilo P. Phan, Anh Huy Caiafa, Cesar Federico Zhou, Guoxu Zhao, Qibin De Lathauwer, Lieven |
author_role |
author |
author2 |
Mandic, Danilo P. Phan, Anh Huy Caiafa, Cesar Federico Zhou, Guoxu Zhao, Qibin De Lathauwer, Lieven |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Tensor decompositions Component analysis Signal processing |
topic |
Tensor decompositions Component analysis Signal processing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile multi-way data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to find more general latent components in the data than matrix-based methods, and to have great flexibility in the choice of constraints that match data properties. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We also cover computational aspects and show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the blessings of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these blessings also extend to vector/matrix data through tensorization. Fil: Cichocki, Andrzej. Riken Brain Science Institute; Japón Fil: Mandic, Danilo P.. Imperial College London; Reino Unido Fil: Phan, Anh Huy. Riken Brain Science Institute; Japón Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina Fil: Zhou, Guoxu . Riken Brain Science Institute; Japón Fil: Zhao, Qibin. Riken Brain Science Institute; Japón Fil: De Lathauwer, Lieven. Katholikie Universiteit Leuven; Bélgica |
description |
The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile multi-way data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to find more general latent components in the data than matrix-based methods, and to have great flexibility in the choice of constraints that match data properties. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We also cover computational aspects and show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the blessings of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these blessings also extend to vector/matrix data through tensorization. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5905 Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar Federico; Zhou, Guoxu ; et al.; Tensor decompositions for signal processing applications: from two-way to multiway component analysis; Institute of Electrical and Electronics Engineers; IEEE Signal Processing Magazine; 32; 2; 3-2015; 145-163 1053-5888 |
url |
http://hdl.handle.net/11336/5905 |
identifier_str_mv |
Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar Federico; Zhou, Guoxu ; et al.; Tensor decompositions for signal processing applications: from two-way to multiway component analysis; Institute of Electrical and Electronics Engineers; IEEE Signal Processing Magazine; 32; 2; 3-2015; 145-163 1053-5888 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7038247 info:eu-repo/semantics/altIdentifier/doi/10.1109/MSP.2013.2297439 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1403.4462v1 info:eu-repo/semantics/altIdentifier/arxiv/1403.4462v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606765021691904 |
score |
13.001348 |