Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations
- Autores
- Li, Chao; Zeng, Junhua; Li, Chunmei; Caiafa, César Federico; Zhao, Qibin
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Tensor network (TN) is a powerful framework in machine learning, but selecting a good TN model, known as TN structure search (TN-SS), is a challenging and computationally intensive task. The recent approach TNLS (Li et al., 2022) showed promising results for this task. However, its computational efficiency is still unaffordable, requiring too many evaluations of the objective function. We propose TnALE, a surprisingly simple algorithm that updates each structure-related variable alternately by local enumeration, greatly reducing the number of evaluations compared to TNLS. We theoretically investigate the descent steps for TNLS and TnALE, proving that both the algorithms can achieve linear convergence up to a constant if a sufficient reduction of the objective is reached in each neighborhood. We further compare the evaluation efficiency of TNLS and TnALE, revealing that Ω(2K) evaluations are typically required in TNLS for reaching the objective reduction, while ideally O(KR) evaluations are sufficient in TnALE, where K denotes the dimension of search space and R reflects the “low-rankness” of the neighborhood. Experimental results verify that TnALE can find practically good TN structures with vastly fewer evaluations than the state-of-the-art algorithms.
Fil: Li, Chao. Riken Aip; Japón
Fil: Zeng, Junhua. Riken Aip; Japón. Guangdong University of Technology; China
Fil: Li, Chunmei. Riken Aip; Japón. Harbin Engineering University; China
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Zhao, Qibin. Riken Aip; Japón
40th International Conference on Machine Learning
Honolulu
Estados Unidos
International Council for Machinery Lubrication - Materia
-
Tensor Network
Signal Processing
Machine Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/221893
Ver los metadatos del registro completo
id |
CONICETDig_78b8cccabb94b1f0e8212dd827aab0b5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/221893 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluationsLi, ChaoZeng, JunhuaLi, ChunmeiCaiafa, César FedericoZhao, QibinTensor NetworkSignal ProcessingMachine Learninghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Tensor network (TN) is a powerful framework in machine learning, but selecting a good TN model, known as TN structure search (TN-SS), is a challenging and computationally intensive task. The recent approach TNLS (Li et al., 2022) showed promising results for this task. However, its computational efficiency is still unaffordable, requiring too many evaluations of the objective function. We propose TnALE, a surprisingly simple algorithm that updates each structure-related variable alternately by local enumeration, greatly reducing the number of evaluations compared to TNLS. We theoretically investigate the descent steps for TNLS and TnALE, proving that both the algorithms can achieve linear convergence up to a constant if a sufficient reduction of the objective is reached in each neighborhood. We further compare the evaluation efficiency of TNLS and TnALE, revealing that Ω(2K) evaluations are typically required in TNLS for reaching the objective reduction, while ideally O(KR) evaluations are sufficient in TnALE, where K denotes the dimension of search space and R reflects the “low-rankness” of the neighborhood. Experimental results verify that TnALE can find practically good TN structures with vastly fewer evaluations than the state-of-the-art algorithms.Fil: Li, Chao. Riken Aip; JapónFil: Zeng, Junhua. Riken Aip; Japón. Guangdong University of Technology; ChinaFil: Li, Chunmei. Riken Aip; Japón. Harbin Engineering University; ChinaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Zhao, Qibin. Riken Aip; Japón40th International Conference on Machine LearningHonoluluEstados UnidosInternational Council for Machinery LubricationMLR PressLawrence, NeilKrause, Andreas2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/221893Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations; 40th International Conference on Machine Learning; Honolulu; Estados Unidos; 2023; 20384-204112640-3498CONICET DigitalCONICETenghttps://www.neventum.com/tradeshows/international-conference-machine-learning-icmlinfo:eu-repo/semantics/altIdentifier/url/http://proceedings.mlr.press/v202/li23ar/li23ar.pdfinfo:eu-repo/semantics/altIdentifier/url/https://proceedings.mlr.press/v202/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:38Zoai:ri.conicet.gov.ar:11336/221893instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:38.811CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations |
title |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations |
spellingShingle |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations Li, Chao Tensor Network Signal Processing Machine Learning |
title_short |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations |
title_full |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations |
title_fullStr |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations |
title_full_unstemmed |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations |
title_sort |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations |
dc.creator.none.fl_str_mv |
Li, Chao Zeng, Junhua Li, Chunmei Caiafa, César Federico Zhao, Qibin |
author |
Li, Chao |
author_facet |
Li, Chao Zeng, Junhua Li, Chunmei Caiafa, César Federico Zhao, Qibin |
author_role |
author |
author2 |
Zeng, Junhua Li, Chunmei Caiafa, César Federico Zhao, Qibin |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Lawrence, Neil Krause, Andreas |
dc.subject.none.fl_str_mv |
Tensor Network Signal Processing Machine Learning |
topic |
Tensor Network Signal Processing Machine Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Tensor network (TN) is a powerful framework in machine learning, but selecting a good TN model, known as TN structure search (TN-SS), is a challenging and computationally intensive task. The recent approach TNLS (Li et al., 2022) showed promising results for this task. However, its computational efficiency is still unaffordable, requiring too many evaluations of the objective function. We propose TnALE, a surprisingly simple algorithm that updates each structure-related variable alternately by local enumeration, greatly reducing the number of evaluations compared to TNLS. We theoretically investigate the descent steps for TNLS and TnALE, proving that both the algorithms can achieve linear convergence up to a constant if a sufficient reduction of the objective is reached in each neighborhood. We further compare the evaluation efficiency of TNLS and TnALE, revealing that Ω(2K) evaluations are typically required in TNLS for reaching the objective reduction, while ideally O(KR) evaluations are sufficient in TnALE, where K denotes the dimension of search space and R reflects the “low-rankness” of the neighborhood. Experimental results verify that TnALE can find practically good TN structures with vastly fewer evaluations than the state-of-the-art algorithms. Fil: Li, Chao. Riken Aip; Japón Fil: Zeng, Junhua. Riken Aip; Japón. Guangdong University of Technology; China Fil: Li, Chunmei. Riken Aip; Japón. Harbin Engineering University; China Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Zhao, Qibin. Riken Aip; Japón 40th International Conference on Machine Learning Honolulu Estados Unidos International Council for Machinery Lubrication |
description |
Tensor network (TN) is a powerful framework in machine learning, but selecting a good TN model, known as TN structure search (TN-SS), is a challenging and computationally intensive task. The recent approach TNLS (Li et al., 2022) showed promising results for this task. However, its computational efficiency is still unaffordable, requiring too many evaluations of the objective function. We propose TnALE, a surprisingly simple algorithm that updates each structure-related variable alternately by local enumeration, greatly reducing the number of evaluations compared to TNLS. We theoretically investigate the descent steps for TNLS and TnALE, proving that both the algorithms can achieve linear convergence up to a constant if a sufficient reduction of the objective is reached in each neighborhood. We further compare the evaluation efficiency of TNLS and TnALE, revealing that Ω(2K) evaluations are typically required in TNLS for reaching the objective reduction, while ideally O(KR) evaluations are sufficient in TnALE, where K denotes the dimension of search space and R reflects the “low-rankness” of the neighborhood. Experimental results verify that TnALE can find practically good TN structures with vastly fewer evaluations than the state-of-the-art algorithms. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/221893 Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations; 40th International Conference on Machine Learning; Honolulu; Estados Unidos; 2023; 20384-20411 2640-3498 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/221893 |
identifier_str_mv |
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations; 40th International Conference on Machine Learning; Honolulu; Estados Unidos; 2023; 20384-20411 2640-3498 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.neventum.com/tradeshows/international-conference-machine-learning-icml info:eu-repo/semantics/altIdentifier/url/http://proceedings.mlr.press/v202/li23ar/li23ar.pdf info:eu-repo/semantics/altIdentifier/url/https://proceedings.mlr.press/v202/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
MLR Press |
publisher.none.fl_str_mv |
MLR Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083294019452928 |
score |
13.22299 |