Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability
- Autores
- Longo, Mathias; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With self-provisioning of resources as premise, dew computing aims at providing computing services by minimizing the dependency over existing internetwork back-haul. Mobile devices have a huge potential to contribute to this emerging paradigm, not only due to their proximity to the end user, ever growing computing/storage features and pervasiveness, but also due to their capability to render services for several hours, even days,without being plugged to the electricity grid. Nonetheless,misusing the energy of their batteries can discourage owners to offer devices as resource providers in dew computing environments. Arguably, having accurate estimations of remaining battery would help to take better advantage of a device's computing capabilities. In this paper, we propose a model to estimate mobile devices battery availability by inspecting traces of real mobile device owner's activity and relevant device state variables. Themodel includes a feature extraction approach to obtain representative features/variables, and a prediction approach, based on regression models and machine learning classifiers. On average, the accuracy of our approach, measured with the mean squared error metric, overpasses the one obtained by a relatedwork. Prediction experiments at five hours ahead are performed over activity logs of 23 mobile users across several months.
Fil: Longo, Mathias. University of Southern California; Estados Unidos
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
BATTERY PREDICTION
DEW COMPUTING
FEATURE SELECTION
MACHINE LEARNING
MOBILE CLOUD COMPUTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121003
Ver los metadatos del registro completo
| id |
CONICETDig_9e1d2183754b38f13dc3b01af10dc303 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121003 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availabilityLongo, MathiasHirsch Jofré, Matías EberardoMateos Diaz, Cristian MaximilianoZunino Suarez, Alejandro OctavioBATTERY PREDICTIONDEW COMPUTINGFEATURE SELECTIONMACHINE LEARNINGMOBILE CLOUD COMPUTINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1With self-provisioning of resources as premise, dew computing aims at providing computing services by minimizing the dependency over existing internetwork back-haul. Mobile devices have a huge potential to contribute to this emerging paradigm, not only due to their proximity to the end user, ever growing computing/storage features and pervasiveness, but also due to their capability to render services for several hours, even days,without being plugged to the electricity grid. Nonetheless,misusing the energy of their batteries can discourage owners to offer devices as resource providers in dew computing environments. Arguably, having accurate estimations of remaining battery would help to take better advantage of a device's computing capabilities. In this paper, we propose a model to estimate mobile devices battery availability by inspecting traces of real mobile device owner's activity and relevant device state variables. Themodel includes a feature extraction approach to obtain representative features/variables, and a prediction approach, based on regression models and machine learning classifiers. On average, the accuracy of our approach, measured with the mean squared error metric, overpasses the one obtained by a relatedwork. Prediction experiments at five hours ahead are performed over activity logs of 23 mobile users across several months.Fil: Longo, Mathias. University of Southern California; Estados UnidosFil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaMDPI AG2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121003Longo, Mathias; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability; MDPI AG; Information; 10; 3; 2-2019; 1-172078-2489CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2078-2489/10/3/86info:eu-repo/semantics/altIdentifier/doi/10.3390/info10030086info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:07:52Zoai:ri.conicet.gov.ar:11336/121003instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:07:52.681CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability |
| title |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability |
| spellingShingle |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability Longo, Mathias BATTERY PREDICTION DEW COMPUTING FEATURE SELECTION MACHINE LEARNING MOBILE CLOUD COMPUTING |
| title_short |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability |
| title_full |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability |
| title_fullStr |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability |
| title_full_unstemmed |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability |
| title_sort |
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability |
| dc.creator.none.fl_str_mv |
Longo, Mathias Hirsch Jofré, Matías Eberardo Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
| author |
Longo, Mathias |
| author_facet |
Longo, Mathias Hirsch Jofré, Matías Eberardo Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
| author_role |
author |
| author2 |
Hirsch Jofré, Matías Eberardo Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
BATTERY PREDICTION DEW COMPUTING FEATURE SELECTION MACHINE LEARNING MOBILE CLOUD COMPUTING |
| topic |
BATTERY PREDICTION DEW COMPUTING FEATURE SELECTION MACHINE LEARNING MOBILE CLOUD COMPUTING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
With self-provisioning of resources as premise, dew computing aims at providing computing services by minimizing the dependency over existing internetwork back-haul. Mobile devices have a huge potential to contribute to this emerging paradigm, not only due to their proximity to the end user, ever growing computing/storage features and pervasiveness, but also due to their capability to render services for several hours, even days,without being plugged to the electricity grid. Nonetheless,misusing the energy of their batteries can discourage owners to offer devices as resource providers in dew computing environments. Arguably, having accurate estimations of remaining battery would help to take better advantage of a device's computing capabilities. In this paper, we propose a model to estimate mobile devices battery availability by inspecting traces of real mobile device owner's activity and relevant device state variables. Themodel includes a feature extraction approach to obtain representative features/variables, and a prediction approach, based on regression models and machine learning classifiers. On average, the accuracy of our approach, measured with the mean squared error metric, overpasses the one obtained by a relatedwork. Prediction experiments at five hours ahead are performed over activity logs of 23 mobile users across several months. Fil: Longo, Mathias. University of Southern California; Estados Unidos Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
| description |
With self-provisioning of resources as premise, dew computing aims at providing computing services by minimizing the dependency over existing internetwork back-haul. Mobile devices have a huge potential to contribute to this emerging paradigm, not only due to their proximity to the end user, ever growing computing/storage features and pervasiveness, but also due to their capability to render services for several hours, even days,without being plugged to the electricity grid. Nonetheless,misusing the energy of their batteries can discourage owners to offer devices as resource providers in dew computing environments. Arguably, having accurate estimations of remaining battery would help to take better advantage of a device's computing capabilities. In this paper, we propose a model to estimate mobile devices battery availability by inspecting traces of real mobile device owner's activity and relevant device state variables. Themodel includes a feature extraction approach to obtain representative features/variables, and a prediction approach, based on regression models and machine learning classifiers. On average, the accuracy of our approach, measured with the mean squared error metric, overpasses the one obtained by a relatedwork. Prediction experiments at five hours ahead are performed over activity logs of 23 mobile users across several months. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121003 Longo, Mathias; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability; MDPI AG; Information; 10; 3; 2-2019; 1-17 2078-2489 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/121003 |
| identifier_str_mv |
Longo, Mathias; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability; MDPI AG; Information; 10; 3; 2-2019; 1-17 2078-2489 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2078-2489/10/3/86 info:eu-repo/semantics/altIdentifier/doi/10.3390/info10030086 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI AG |
| publisher.none.fl_str_mv |
MDPI AG |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849873547171725312 |
| score |
13.011256 |