A simple way of approximating the canonical partition functions in statistical mechanics

Autores
Fernández, Francisco Marcelo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
EULER-MACLAURIN FORMULA
PARTITION FUNCTION
SIMPLER APPROACH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48844

id CONICETDig_9dff456f0b31decec2b829876e37e405
oai_identifier_str oai:ri.conicet.gov.ar:11336/48844
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A simple way of approximating the canonical partition functions in statistical mechanicsFernández, Francisco MarceloEULER-MACLAURIN FORMULAPARTITION FUNCTIONSIMPLER APPROACHhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaIOP Publishing2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48844Fernández, Francisco Marcelo; A simple way of approximating the canonical partition functions in statistical mechanics; IOP Publishing; European Journal of Physics; 36; 5; 9-2015; 1-8; 0550260143-0807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0143-0807/36/5/055026info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0143-0807/36/5/055026/metainfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.02054info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:11:31Zoai:ri.conicet.gov.ar:11336/48844instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:11:31.424CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A simple way of approximating the canonical partition functions in statistical mechanics
title A simple way of approximating the canonical partition functions in statistical mechanics
spellingShingle A simple way of approximating the canonical partition functions in statistical mechanics
Fernández, Francisco Marcelo
EULER-MACLAURIN FORMULA
PARTITION FUNCTION
SIMPLER APPROACH
title_short A simple way of approximating the canonical partition functions in statistical mechanics
title_full A simple way of approximating the canonical partition functions in statistical mechanics
title_fullStr A simple way of approximating the canonical partition functions in statistical mechanics
title_full_unstemmed A simple way of approximating the canonical partition functions in statistical mechanics
title_sort A simple way of approximating the canonical partition functions in statistical mechanics
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
author_role author
dc.subject.none.fl_str_mv EULER-MACLAURIN FORMULA
PARTITION FUNCTION
SIMPLER APPROACH
topic EULER-MACLAURIN FORMULA
PARTITION FUNCTION
SIMPLER APPROACH
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48844
Fernández, Francisco Marcelo; A simple way of approximating the canonical partition functions in statistical mechanics; IOP Publishing; European Journal of Physics; 36; 5; 9-2015; 1-8; 055026
0143-0807
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48844
identifier_str_mv Fernández, Francisco Marcelo; A simple way of approximating the canonical partition functions in statistical mechanics; IOP Publishing; European Journal of Physics; 36; 5; 9-2015; 1-8; 055026
0143-0807
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0143-0807/36/5/055026
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0143-0807/36/5/055026/meta
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.02054
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083263198658560
score 13.22299