A simple way of approximating the canonical partition functions in statistical mechanics
- Autores
- Fernández, Francisco Marcelo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
EULER-MACLAURIN FORMULA
PARTITION FUNCTION
SIMPLER APPROACH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48844
Ver los metadatos del registro completo
id |
CONICETDig_9dff456f0b31decec2b829876e37e405 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48844 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A simple way of approximating the canonical partition functions in statistical mechanicsFernández, Francisco MarceloEULER-MACLAURIN FORMULAPARTITION FUNCTIONSIMPLER APPROACHhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaIOP Publishing2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48844Fernández, Francisco Marcelo; A simple way of approximating the canonical partition functions in statistical mechanics; IOP Publishing; European Journal of Physics; 36; 5; 9-2015; 1-8; 0550260143-0807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0143-0807/36/5/055026info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0143-0807/36/5/055026/metainfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.02054info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:11:31Zoai:ri.conicet.gov.ar:11336/48844instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:11:31.424CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A simple way of approximating the canonical partition functions in statistical mechanics |
title |
A simple way of approximating the canonical partition functions in statistical mechanics |
spellingShingle |
A simple way of approximating the canonical partition functions in statistical mechanics Fernández, Francisco Marcelo EULER-MACLAURIN FORMULA PARTITION FUNCTION SIMPLER APPROACH |
title_short |
A simple way of approximating the canonical partition functions in statistical mechanics |
title_full |
A simple way of approximating the canonical partition functions in statistical mechanics |
title_fullStr |
A simple way of approximating the canonical partition functions in statistical mechanics |
title_full_unstemmed |
A simple way of approximating the canonical partition functions in statistical mechanics |
title_sort |
A simple way of approximating the canonical partition functions in statistical mechanics |
dc.creator.none.fl_str_mv |
Fernández, Francisco Marcelo |
author |
Fernández, Francisco Marcelo |
author_facet |
Fernández, Francisco Marcelo |
author_role |
author |
dc.subject.none.fl_str_mv |
EULER-MACLAURIN FORMULA PARTITION FUNCTION SIMPLER APPROACH |
topic |
EULER-MACLAURIN FORMULA PARTITION FUNCTION SIMPLER APPROACH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations. Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48844 Fernández, Francisco Marcelo; A simple way of approximating the canonical partition functions in statistical mechanics; IOP Publishing; European Journal of Physics; 36; 5; 9-2015; 1-8; 055026 0143-0807 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48844 |
identifier_str_mv |
Fernández, Francisco Marcelo; A simple way of approximating the canonical partition functions in statistical mechanics; IOP Publishing; European Journal of Physics; 36; 5; 9-2015; 1-8; 055026 0143-0807 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0143-0807/36/5/055026 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0143-0807/36/5/055026/meta info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.02054 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083263198658560 |
score |
13.22299 |