Analysis of Tsallis’ classical partition function’s poles

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
When one integrates the q-exponential function of Tsallis’ so as to get the partition function Z, a gamma function inevitably emerges. Consequently, poles arise.Weinvestigate here the thermodynamic significance of these poles in the case of n classical harmonic oscillators (HO). Given that this is an exceedingly well known system, any new feature that may arise can safely be attributed to the poles’ effect. We appeal to the mathematical tools used in Plastino et al. (2016) and Plastino and Rocca (2017), and obtain both bound and unbound states. In the first case, we are then faced with a classical Einstein crystal. We also detect what might be interpreted as pseudo gravitational effects.
Instituto de Física La Plata
Materia
Física
q-Statistics
Divergences
Partition function
Dimensional regularization
Specific heat
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/117249

id SEDICI_c824c44a8f5f46a8a8e822a786b2ec22
oai_identifier_str oai:sedici.unlp.edu.ar:10915/117249
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Analysis of Tsallis’ classical partition function’s polesPlastino, Ángel LuisRocca, Mario CarlosFísicaq-StatisticsDivergencesPartition functionDimensional regularizationSpecific heatWhen one integrates the q-exponential function of Tsallis’ so as to get the partition function Z, a gamma function inevitably emerges. Consequently, poles arise.Weinvestigate here the thermodynamic significance of these poles in the case of n classical harmonic oscillators (HO). Given that this is an exceedingly well known system, any new feature that may arise can safely be attributed to the poles’ effect. We appeal to the mathematical tools used in Plastino et al. (2016) and Plastino and Rocca (2017), and obtain both bound and unbound states. In the first case, we are then faced with a classical Einstein crystal. We also detect what might be interpreted as pseudo gravitational effects.Instituto de Física La Plata2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf196-204http://sedici.unlp.edu.ar/handle/10915/117249enginfo:eu-repo/semantics/altIdentifier/issn/0378-4371info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.06.026info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:27:34Zoai:sedici.unlp.edu.ar:10915/117249Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:27:35.094SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Analysis of Tsallis’ classical partition function’s poles
title Analysis of Tsallis’ classical partition function’s poles
spellingShingle Analysis of Tsallis’ classical partition function’s poles
Plastino, Ángel Luis
Física
q-Statistics
Divergences
Partition function
Dimensional regularization
Specific heat
title_short Analysis of Tsallis’ classical partition function’s poles
title_full Analysis of Tsallis’ classical partition function’s poles
title_fullStr Analysis of Tsallis’ classical partition function’s poles
title_full_unstemmed Analysis of Tsallis’ classical partition function’s poles
title_sort Analysis of Tsallis’ classical partition function’s poles
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_role author
author2 Rocca, Mario Carlos
author2_role author
dc.subject.none.fl_str_mv Física
q-Statistics
Divergences
Partition function
Dimensional regularization
Specific heat
topic Física
q-Statistics
Divergences
Partition function
Dimensional regularization
Specific heat
dc.description.none.fl_txt_mv When one integrates the q-exponential function of Tsallis’ so as to get the partition function Z, a gamma function inevitably emerges. Consequently, poles arise.Weinvestigate here the thermodynamic significance of these poles in the case of n classical harmonic oscillators (HO). Given that this is an exceedingly well known system, any new feature that may arise can safely be attributed to the poles’ effect. We appeal to the mathematical tools used in Plastino et al. (2016) and Plastino and Rocca (2017), and obtain both bound and unbound states. In the first case, we are then faced with a classical Einstein crystal. We also detect what might be interpreted as pseudo gravitational effects.
Instituto de Física La Plata
description When one integrates the q-exponential function of Tsallis’ so as to get the partition function Z, a gamma function inevitably emerges. Consequently, poles arise.Weinvestigate here the thermodynamic significance of these poles in the case of n classical harmonic oscillators (HO). Given that this is an exceedingly well known system, any new feature that may arise can safely be attributed to the poles’ effect. We appeal to the mathematical tools used in Plastino et al. (2016) and Plastino and Rocca (2017), and obtain both bound and unbound states. In the first case, we are then faced with a classical Einstein crystal. We also detect what might be interpreted as pseudo gravitational effects.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/117249
url http://sedici.unlp.edu.ar/handle/10915/117249
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0378-4371
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.06.026
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
196-204
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616153604816896
score 13.070432