Optimal partition problems for the fractional Laplacian

Autores
Ritorto, Antonella
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5].
Fil: Ritorto, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
FRACTIONAL CAPACITIES
FRACTIONAL PARTIAL EQUATIONS
OPTIMAL PARTITION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55818

id CONICETDig_f33a6f9d88648c5757bc79de61fb3375
oai_identifier_str oai:ri.conicet.gov.ar:11336/55818
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal partition problems for the fractional LaplacianRitorto, AntonellaFRACTIONAL CAPACITIESFRACTIONAL PARTIAL EQUATIONSOPTIMAL PARTITIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5].Fil: Ritorto, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer Heidelberg2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55818Ritorto, Antonella; Optimal partition problems for the fractional Laplacian; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 2; 4-2018; 501-5160373-3114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-017-0689-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10231-017-0689-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:46Zoai:ri.conicet.gov.ar:11336/55818instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:47.198CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal partition problems for the fractional Laplacian
title Optimal partition problems for the fractional Laplacian
spellingShingle Optimal partition problems for the fractional Laplacian
Ritorto, Antonella
FRACTIONAL CAPACITIES
FRACTIONAL PARTIAL EQUATIONS
OPTIMAL PARTITION
title_short Optimal partition problems for the fractional Laplacian
title_full Optimal partition problems for the fractional Laplacian
title_fullStr Optimal partition problems for the fractional Laplacian
title_full_unstemmed Optimal partition problems for the fractional Laplacian
title_sort Optimal partition problems for the fractional Laplacian
dc.creator.none.fl_str_mv Ritorto, Antonella
author Ritorto, Antonella
author_facet Ritorto, Antonella
author_role author
dc.subject.none.fl_str_mv FRACTIONAL CAPACITIES
FRACTIONAL PARTIAL EQUATIONS
OPTIMAL PARTITION
topic FRACTIONAL CAPACITIES
FRACTIONAL PARTIAL EQUATIONS
OPTIMAL PARTITION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5].
Fil: Ritorto, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5].
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55818
Ritorto, Antonella; Optimal partition problems for the fractional Laplacian; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 2; 4-2018; 501-516
0373-3114
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55818
identifier_str_mv Ritorto, Antonella; Optimal partition problems for the fractional Laplacian; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 2; 4-2018; 501-516
0373-3114
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-017-0689-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10231-017-0689-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613836157485056
score 13.070432