Optimal partition problems for the fractional Laplacian
- Autores
- Ritorto, Antonella
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5].
Fil: Ritorto, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
FRACTIONAL CAPACITIES
FRACTIONAL PARTIAL EQUATIONS
OPTIMAL PARTITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55818
Ver los metadatos del registro completo
id |
CONICETDig_f33a6f9d88648c5757bc79de61fb3375 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55818 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal partition problems for the fractional LaplacianRitorto, AntonellaFRACTIONAL CAPACITIESFRACTIONAL PARTIAL EQUATIONSOPTIMAL PARTITIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5].Fil: Ritorto, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer Heidelberg2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55818Ritorto, Antonella; Optimal partition problems for the fractional Laplacian; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 2; 4-2018; 501-5160373-3114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-017-0689-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10231-017-0689-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:46Zoai:ri.conicet.gov.ar:11336/55818instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:47.198CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal partition problems for the fractional Laplacian |
title |
Optimal partition problems for the fractional Laplacian |
spellingShingle |
Optimal partition problems for the fractional Laplacian Ritorto, Antonella FRACTIONAL CAPACITIES FRACTIONAL PARTIAL EQUATIONS OPTIMAL PARTITION |
title_short |
Optimal partition problems for the fractional Laplacian |
title_full |
Optimal partition problems for the fractional Laplacian |
title_fullStr |
Optimal partition problems for the fractional Laplacian |
title_full_unstemmed |
Optimal partition problems for the fractional Laplacian |
title_sort |
Optimal partition problems for the fractional Laplacian |
dc.creator.none.fl_str_mv |
Ritorto, Antonella |
author |
Ritorto, Antonella |
author_facet |
Ritorto, Antonella |
author_role |
author |
dc.subject.none.fl_str_mv |
FRACTIONAL CAPACITIES FRACTIONAL PARTIAL EQUATIONS OPTIMAL PARTITION |
topic |
FRACTIONAL CAPACITIES FRACTIONAL PARTIAL EQUATIONS OPTIMAL PARTITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5]. Fil: Ritorto, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5]. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55818 Ritorto, Antonella; Optimal partition problems for the fractional Laplacian; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 2; 4-2018; 501-516 0373-3114 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55818 |
identifier_str_mv |
Ritorto, Antonella; Optimal partition problems for the fractional Laplacian; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 2; 4-2018; 501-516 0373-3114 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-017-0689-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10231-017-0689-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613836157485056 |
score |
13.070432 |