Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)

Autores
Borosky, Gabriela Leonor; Lin, Susana
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Alkaline phosphatases (APs) catalyze the hydrolysis and transphosphorylation of phosphate monoesters. Quantum mechanical, molecular dynamics, and molecular docking techniques were applied to computationally model the catalytic mechanism of human placental AP (PLAP). Kinetic and thermodynamic evaluations were performed for each reaction step. The functional significances of the more important residues within the active site were analyzed. The role of the metal ion at the metal binding site M3 was also examined. The calculated activation and reaction energy and free energy values obtained suggested the nucleophilic attack of the Ser92 alkoxide on the phosphorus atom of the substrate would be the rate-limiting step of the catalytic hydrolysis of alkyl phosphate monoesters by PLAP. The reactivities of the wild-type M3-Mg enzyme and the M3-Zn protein were compared, and the main difference observed was a change in the coordination number of the M3 metal for the M3-Zn enzyme. This modification in the active site structure lowered the free energy profile for the second chemical step of the catalytic mechanism (hydrolysis of the covalent phosphoserine intermediate). Consequently, a greater stabilization of the phosphoseryl moiety resulted in a small increment in the activation free energy of the phosphoserine hydrolysis reaction. These computational results suggest that the activation of APs by magnesium at the M3 site is caused by the preference of Mg2+ for octahedral coordination, which structurally stabilizes the active site into a catalytically most active conformation. The present theoretical results are in good agreement with previously reported experimental studies. © 2011 American Chemical Society.
Fil: Borosky, Gabriela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Lin, Susana. National Health Research Institutes; República de China
Materia
Alkaline Phosphatase
Quantum Chemistry
Oniom Calculations
Chemical Reactivity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61731

id CONICETDig_9d534c8693f73b2c2f67107a0743db6a
oai_identifier_str oai:ri.conicet.gov.ar:11336/61731
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)Borosky, Gabriela LeonorLin, SusanaAlkaline PhosphataseQuantum ChemistryOniom CalculationsChemical Reactivityhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Alkaline phosphatases (APs) catalyze the hydrolysis and transphosphorylation of phosphate monoesters. Quantum mechanical, molecular dynamics, and molecular docking techniques were applied to computationally model the catalytic mechanism of human placental AP (PLAP). Kinetic and thermodynamic evaluations were performed for each reaction step. The functional significances of the more important residues within the active site were analyzed. The role of the metal ion at the metal binding site M3 was also examined. The calculated activation and reaction energy and free energy values obtained suggested the nucleophilic attack of the Ser92 alkoxide on the phosphorus atom of the substrate would be the rate-limiting step of the catalytic hydrolysis of alkyl phosphate monoesters by PLAP. The reactivities of the wild-type M3-Mg enzyme and the M3-Zn protein were compared, and the main difference observed was a change in the coordination number of the M3 metal for the M3-Zn enzyme. This modification in the active site structure lowered the free energy profile for the second chemical step of the catalytic mechanism (hydrolysis of the covalent phosphoserine intermediate). Consequently, a greater stabilization of the phosphoseryl moiety resulted in a small increment in the activation free energy of the phosphoserine hydrolysis reaction. These computational results suggest that the activation of APs by magnesium at the M3 site is caused by the preference of Mg2+ for octahedral coordination, which structurally stabilizes the active site into a catalytically most active conformation. The present theoretical results are in good agreement with previously reported experimental studies. © 2011 American Chemical Society.Fil: Borosky, Gabriela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Lin, Susana. National Health Research Institutes; República de ChinaAmerican Chemical Society2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61731Borosky, Gabriela Leonor; Lin, Susana; Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP); American Chemical Society; Journal of Chemical Information and Modeling; 51; 10; 10-2011; 2538-25481549-9596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ci200228sinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ci200228sinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:16Zoai:ri.conicet.gov.ar:11336/61731instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:16.546CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)
title Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)
spellingShingle Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)
Borosky, Gabriela Leonor
Alkaline Phosphatase
Quantum Chemistry
Oniom Calculations
Chemical Reactivity
title_short Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)
title_full Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)
title_fullStr Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)
title_full_unstemmed Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)
title_sort Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP)
dc.creator.none.fl_str_mv Borosky, Gabriela Leonor
Lin, Susana
author Borosky, Gabriela Leonor
author_facet Borosky, Gabriela Leonor
Lin, Susana
author_role author
author2 Lin, Susana
author2_role author
dc.subject.none.fl_str_mv Alkaline Phosphatase
Quantum Chemistry
Oniom Calculations
Chemical Reactivity
topic Alkaline Phosphatase
Quantum Chemistry
Oniom Calculations
Chemical Reactivity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Alkaline phosphatases (APs) catalyze the hydrolysis and transphosphorylation of phosphate monoesters. Quantum mechanical, molecular dynamics, and molecular docking techniques were applied to computationally model the catalytic mechanism of human placental AP (PLAP). Kinetic and thermodynamic evaluations were performed for each reaction step. The functional significances of the more important residues within the active site were analyzed. The role of the metal ion at the metal binding site M3 was also examined. The calculated activation and reaction energy and free energy values obtained suggested the nucleophilic attack of the Ser92 alkoxide on the phosphorus atom of the substrate would be the rate-limiting step of the catalytic hydrolysis of alkyl phosphate monoesters by PLAP. The reactivities of the wild-type M3-Mg enzyme and the M3-Zn protein were compared, and the main difference observed was a change in the coordination number of the M3 metal for the M3-Zn enzyme. This modification in the active site structure lowered the free energy profile for the second chemical step of the catalytic mechanism (hydrolysis of the covalent phosphoserine intermediate). Consequently, a greater stabilization of the phosphoseryl moiety resulted in a small increment in the activation free energy of the phosphoserine hydrolysis reaction. These computational results suggest that the activation of APs by magnesium at the M3 site is caused by the preference of Mg2+ for octahedral coordination, which structurally stabilizes the active site into a catalytically most active conformation. The present theoretical results are in good agreement with previously reported experimental studies. © 2011 American Chemical Society.
Fil: Borosky, Gabriela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Lin, Susana. National Health Research Institutes; República de China
description Alkaline phosphatases (APs) catalyze the hydrolysis and transphosphorylation of phosphate monoesters. Quantum mechanical, molecular dynamics, and molecular docking techniques were applied to computationally model the catalytic mechanism of human placental AP (PLAP). Kinetic and thermodynamic evaluations were performed for each reaction step. The functional significances of the more important residues within the active site were analyzed. The role of the metal ion at the metal binding site M3 was also examined. The calculated activation and reaction energy and free energy values obtained suggested the nucleophilic attack of the Ser92 alkoxide on the phosphorus atom of the substrate would be the rate-limiting step of the catalytic hydrolysis of alkyl phosphate monoesters by PLAP. The reactivities of the wild-type M3-Mg enzyme and the M3-Zn protein were compared, and the main difference observed was a change in the coordination number of the M3 metal for the M3-Zn enzyme. This modification in the active site structure lowered the free energy profile for the second chemical step of the catalytic mechanism (hydrolysis of the covalent phosphoserine intermediate). Consequently, a greater stabilization of the phosphoseryl moiety resulted in a small increment in the activation free energy of the phosphoserine hydrolysis reaction. These computational results suggest that the activation of APs by magnesium at the M3 site is caused by the preference of Mg2+ for octahedral coordination, which structurally stabilizes the active site into a catalytically most active conformation. The present theoretical results are in good agreement with previously reported experimental studies. © 2011 American Chemical Society.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61731
Borosky, Gabriela Leonor; Lin, Susana; Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP); American Chemical Society; Journal of Chemical Information and Modeling; 51; 10; 10-2011; 2538-2548
1549-9596
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61731
identifier_str_mv Borosky, Gabriela Leonor; Lin, Susana; Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP); American Chemical Society; Journal of Chemical Information and Modeling; 51; 10; 10-2011; 2538-2548
1549-9596
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/ci200228s
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ci200228s
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981226519986176
score 12.48226