The homotopy analysis method in bifurcation analysis of delay differential equations

Autores
Bel, Andrea Liliana; Reartes, Walter
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we apply the homotopy analysis method (HAM) to study the van der Pol equation with a linear delayed feedback. The paper focuses on the calculation of periodic solutions and associated bifurcations, Hopf, double Hopf, NeimarkSacker, etc. In particular, we discuss the behavior of the systems in the neighborhoods of double Hopf points. We demonstrate the applicability of HAM to the analysis of bifurcation and stability.
Fil: Bel, Andrea Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Reartes, Walter. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
DELAY DIFFERENTIAL EQUATIONS
DOUBLE HOPF BIFURCATION
HOMOTOPY ANALYSIS METHOD
HOPF BIFURCATION
VAN DER POL EQUATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/75772

id CONICETDig_9d0eb993b64f200deb9bb48632d9984c
oai_identifier_str oai:ri.conicet.gov.ar:11336/75772
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The homotopy analysis method in bifurcation analysis of delay differential equationsBel, Andrea LilianaReartes, WalterDELAY DIFFERENTIAL EQUATIONSDOUBLE HOPF BIFURCATIONHOMOTOPY ANALYSIS METHODHOPF BIFURCATIONVAN DER POL EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we apply the homotopy analysis method (HAM) to study the van der Pol equation with a linear delayed feedback. The paper focuses on the calculation of periodic solutions and associated bifurcations, Hopf, double Hopf, NeimarkSacker, etc. In particular, we discuss the behavior of the systems in the neighborhoods of double Hopf points. We demonstrate the applicability of HAM to the analysis of bifurcation and stability.Fil: Bel, Andrea Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Reartes, Walter. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaWorld Scientific2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75772Bel, Andrea Liliana; Reartes, Walter; The homotopy analysis method in bifurcation analysis of delay differential equations; World Scientific; International Journal Of Bifurcation And Chaos; 22; 8; 5-2012; 12300240218-1274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127412300248info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218127412300248info:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/The-homotopy-Analysis-Method-in-bifurcation-of-Bel-Reartes/4b7a4590e1d523ff1a12c7484bcb38002b5e4780info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:21Zoai:ri.conicet.gov.ar:11336/75772instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:21.573CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The homotopy analysis method in bifurcation analysis of delay differential equations
title The homotopy analysis method in bifurcation analysis of delay differential equations
spellingShingle The homotopy analysis method in bifurcation analysis of delay differential equations
Bel, Andrea Liliana
DELAY DIFFERENTIAL EQUATIONS
DOUBLE HOPF BIFURCATION
HOMOTOPY ANALYSIS METHOD
HOPF BIFURCATION
VAN DER POL EQUATION
title_short The homotopy analysis method in bifurcation analysis of delay differential equations
title_full The homotopy analysis method in bifurcation analysis of delay differential equations
title_fullStr The homotopy analysis method in bifurcation analysis of delay differential equations
title_full_unstemmed The homotopy analysis method in bifurcation analysis of delay differential equations
title_sort The homotopy analysis method in bifurcation analysis of delay differential equations
dc.creator.none.fl_str_mv Bel, Andrea Liliana
Reartes, Walter
author Bel, Andrea Liliana
author_facet Bel, Andrea Liliana
Reartes, Walter
author_role author
author2 Reartes, Walter
author2_role author
dc.subject.none.fl_str_mv DELAY DIFFERENTIAL EQUATIONS
DOUBLE HOPF BIFURCATION
HOMOTOPY ANALYSIS METHOD
HOPF BIFURCATION
VAN DER POL EQUATION
topic DELAY DIFFERENTIAL EQUATIONS
DOUBLE HOPF BIFURCATION
HOMOTOPY ANALYSIS METHOD
HOPF BIFURCATION
VAN DER POL EQUATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we apply the homotopy analysis method (HAM) to study the van der Pol equation with a linear delayed feedback. The paper focuses on the calculation of periodic solutions and associated bifurcations, Hopf, double Hopf, NeimarkSacker, etc. In particular, we discuss the behavior of the systems in the neighborhoods of double Hopf points. We demonstrate the applicability of HAM to the analysis of bifurcation and stability.
Fil: Bel, Andrea Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Reartes, Walter. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description In this paper we apply the homotopy analysis method (HAM) to study the van der Pol equation with a linear delayed feedback. The paper focuses on the calculation of periodic solutions and associated bifurcations, Hopf, double Hopf, NeimarkSacker, etc. In particular, we discuss the behavior of the systems in the neighborhoods of double Hopf points. We demonstrate the applicability of HAM to the analysis of bifurcation and stability.
publishDate 2012
dc.date.none.fl_str_mv 2012-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/75772
Bel, Andrea Liliana; Reartes, Walter; The homotopy analysis method in bifurcation analysis of delay differential equations; World Scientific; International Journal Of Bifurcation And Chaos; 22; 8; 5-2012; 1230024
0218-1274
CONICET Digital
CONICET
url http://hdl.handle.net/11336/75772
identifier_str_mv Bel, Andrea Liliana; Reartes, Walter; The homotopy analysis method in bifurcation analysis of delay differential equations; World Scientific; International Journal Of Bifurcation And Chaos; 22; 8; 5-2012; 1230024
0218-1274
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127412300248
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218127412300248
info:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/The-homotopy-Analysis-Method-in-bifurcation-of-Bel-Reartes/4b7a4590e1d523ff1a12c7484bcb38002b5e4780
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269633749450752
score 13.13397