Double Hopf bifurcation analysis using frequency domain methods
- Autores
- Itovich, Griselda Rut; Moiola, Jorge Luis
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The dynamic behavior close to a non-resonant double Hopf bifurcation is analyzed via a frequency-domain technique. Approximate expressions of the periodic solutions are computed using the higher order harmonic balance method while their accuracy and stability have been evaluated through the calculation of the multipliers of the monodromy matrix. Furthermore, the detection of secondary Hopf or torus bifurcations (Neimark–Sacker bifurcation for maps) close to the analyzed singularity has been obtained for a coupled electrical oscillatory circuit. Then, quasi-periodic solutions are likely to exist in certain regions of the parameter space. Extending this analysis to the unfolding of the 1:1 resonant double Hopf bifurcation, cyclic fold and torus bifurcations have also been detected in a controlled oscillatory coupled electrical circuit. The comparison of the results obtained with the suggested technique, and with continuation software packages, has been included.
Fil: Itovich, Griselda Rut. Universidad Nacional del Comahue; Argentina
Fil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina - Materia
-
DOUBLE HOPF BIFURCATION
HARMONIC BALANCE
LIMIT CYCLES
NEIMARK-SACKER BIFURCATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104691
Ver los metadatos del registro completo
id |
CONICETDig_59ea8c7bbd2ca8d2ba6d5afb9818004e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104691 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Double Hopf bifurcation analysis using frequency domain methodsItovich, Griselda RutMoiola, Jorge LuisDOUBLE HOPF BIFURCATIONHARMONIC BALANCELIMIT CYCLESNEIMARK-SACKER BIFURCATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The dynamic behavior close to a non-resonant double Hopf bifurcation is analyzed via a frequency-domain technique. Approximate expressions of the periodic solutions are computed using the higher order harmonic balance method while their accuracy and stability have been evaluated through the calculation of the multipliers of the monodromy matrix. Furthermore, the detection of secondary Hopf or torus bifurcations (Neimark–Sacker bifurcation for maps) close to the analyzed singularity has been obtained for a coupled electrical oscillatory circuit. Then, quasi-periodic solutions are likely to exist in certain regions of the parameter space. Extending this analysis to the unfolding of the 1:1 resonant double Hopf bifurcation, cyclic fold and torus bifurcations have also been detected in a controlled oscillatory coupled electrical circuit. The comparison of the results obtained with the suggested technique, and with continuation software packages, has been included.Fil: Itovich, Griselda Rut. Universidad Nacional del Comahue; ArgentinaFil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaSpringer2005-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104691Itovich, Griselda Rut; Moiola, Jorge Luis; Double Hopf bifurcation analysis using frequency domain methods; Springer ; Nonlinear Dynamics; 39; 2-2005; 235-2580924-090X1573-269XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11071-005-3543-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11071-005-3543-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:37Zoai:ri.conicet.gov.ar:11336/104691instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:37.735CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Double Hopf bifurcation analysis using frequency domain methods |
title |
Double Hopf bifurcation analysis using frequency domain methods |
spellingShingle |
Double Hopf bifurcation analysis using frequency domain methods Itovich, Griselda Rut DOUBLE HOPF BIFURCATION HARMONIC BALANCE LIMIT CYCLES NEIMARK-SACKER BIFURCATION |
title_short |
Double Hopf bifurcation analysis using frequency domain methods |
title_full |
Double Hopf bifurcation analysis using frequency domain methods |
title_fullStr |
Double Hopf bifurcation analysis using frequency domain methods |
title_full_unstemmed |
Double Hopf bifurcation analysis using frequency domain methods |
title_sort |
Double Hopf bifurcation analysis using frequency domain methods |
dc.creator.none.fl_str_mv |
Itovich, Griselda Rut Moiola, Jorge Luis |
author |
Itovich, Griselda Rut |
author_facet |
Itovich, Griselda Rut Moiola, Jorge Luis |
author_role |
author |
author2 |
Moiola, Jorge Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
DOUBLE HOPF BIFURCATION HARMONIC BALANCE LIMIT CYCLES NEIMARK-SACKER BIFURCATION |
topic |
DOUBLE HOPF BIFURCATION HARMONIC BALANCE LIMIT CYCLES NEIMARK-SACKER BIFURCATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The dynamic behavior close to a non-resonant double Hopf bifurcation is analyzed via a frequency-domain technique. Approximate expressions of the periodic solutions are computed using the higher order harmonic balance method while their accuracy and stability have been evaluated through the calculation of the multipliers of the monodromy matrix. Furthermore, the detection of secondary Hopf or torus bifurcations (Neimark–Sacker bifurcation for maps) close to the analyzed singularity has been obtained for a coupled electrical oscillatory circuit. Then, quasi-periodic solutions are likely to exist in certain regions of the parameter space. Extending this analysis to the unfolding of the 1:1 resonant double Hopf bifurcation, cyclic fold and torus bifurcations have also been detected in a controlled oscillatory coupled electrical circuit. The comparison of the results obtained with the suggested technique, and with continuation software packages, has been included. Fil: Itovich, Griselda Rut. Universidad Nacional del Comahue; Argentina Fil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina |
description |
The dynamic behavior close to a non-resonant double Hopf bifurcation is analyzed via a frequency-domain technique. Approximate expressions of the periodic solutions are computed using the higher order harmonic balance method while their accuracy and stability have been evaluated through the calculation of the multipliers of the monodromy matrix. Furthermore, the detection of secondary Hopf or torus bifurcations (Neimark–Sacker bifurcation for maps) close to the analyzed singularity has been obtained for a coupled electrical oscillatory circuit. Then, quasi-periodic solutions are likely to exist in certain regions of the parameter space. Extending this analysis to the unfolding of the 1:1 resonant double Hopf bifurcation, cyclic fold and torus bifurcations have also been detected in a controlled oscillatory coupled electrical circuit. The comparison of the results obtained with the suggested technique, and with continuation software packages, has been included. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104691 Itovich, Griselda Rut; Moiola, Jorge Luis; Double Hopf bifurcation analysis using frequency domain methods; Springer ; Nonlinear Dynamics; 39; 2-2005; 235-258 0924-090X 1573-269X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104691 |
identifier_str_mv |
Itovich, Griselda Rut; Moiola, Jorge Luis; Double Hopf bifurcation analysis using frequency domain methods; Springer ; Nonlinear Dynamics; 39; 2-2005; 235-258 0924-090X 1573-269X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11071-005-3543-z info:eu-repo/semantics/altIdentifier/doi/10.1007/s11071-005-3543-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980721820434432 |
score |
12.993085 |