The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography

Autores
Deco, Gustavo; Liebana Garcia, Samuel; Sanz Perl Hernandez, Yonatan; Sporns, Olaf; Kringelbach, Morten L.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fast, efficient information transfer is essential for the brain to ensure survival. As recently shown in functional magnetic resonance imaging with high spatial resolution, turbulence appears to offer a fundamental way to facilitate energy and information transfer across spatiotemporal scales in brain dynamics. However, given that this imaging modality is comparably slow and not directly linked with neuronal activity, here we investigated the existence of turbulence in fast whole-brain neural dynamics measured with magnetoencephalography (MEG). The coarse spatial observations in MEG necessitated that we created and validated a empirical measure of turbulence. We found that the measure of edge-centric metastability perfectly detected turbulence in a ring of non-local coupled oscillators where the ground-truth was analytically known, even at a coarse spatial scale of observations. This allowed us to use this measure in the spatially coarse, empirical large-scale MEG data from 89 human participants. We demonstrated turbulence in fast neuronal dynamics and used this to quantify information transfer in the brain. The results demonstrate that the necessary efficiency of brain function is dependent on an underlying turbulent regime.
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
Fil: Liebana Garcia, Samuel. University of Oxford; Reino Unido
Fil: Sanz Perl Hernandez, Yonatan. Universidad de Buenos Aires; Argentina. Universitat Pompeu Fabra; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sporns, Olaf. Indiana University; Estados Unidos
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido
Materia
magnetoencephalography
Brain dynamics
Turbulent regime
Whole-brain modelling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/236429

id CONICETDig_9bb23508aa09f654eb52b87e9d53383a
oai_identifier_str oai:ri.conicet.gov.ar:11336/236429
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The effect of turbulence in brain dynamics information transfer measured with magnetoencephalographyDeco, GustavoLiebana Garcia, SamuelSanz Perl Hernandez, YonatanSporns, OlafKringelbach, Morten L.magnetoencephalographyBrain dynamicsTurbulent regimeWhole-brain modellinghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Fast, efficient information transfer is essential for the brain to ensure survival. As recently shown in functional magnetic resonance imaging with high spatial resolution, turbulence appears to offer a fundamental way to facilitate energy and information transfer across spatiotemporal scales in brain dynamics. However, given that this imaging modality is comparably slow and not directly linked with neuronal activity, here we investigated the existence of turbulence in fast whole-brain neural dynamics measured with magnetoencephalography (MEG). The coarse spatial observations in MEG necessitated that we created and validated a empirical measure of turbulence. We found that the measure of edge-centric metastability perfectly detected turbulence in a ring of non-local coupled oscillators where the ground-truth was analytically known, even at a coarse spatial scale of observations. This allowed us to use this measure in the spatially coarse, empirical large-scale MEG data from 89 human participants. We demonstrated turbulence in fast neuronal dynamics and used this to quantify information transfer in the brain. The results demonstrate that the necessary efficiency of brain function is dependent on an underlying turbulent regime.Fil: Deco, Gustavo. Universitat Pompeu Fabra; EspañaFil: Liebana Garcia, Samuel. University of Oxford; Reino UnidoFil: Sanz Perl Hernandez, Yonatan. Universidad de Buenos Aires; Argentina. Universitat Pompeu Fabra; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sporns, Olaf. Indiana University; Estados UnidosFil: Kringelbach, Morten L.. University of Oxford; Reino UnidoNature2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236429Deco, Gustavo; Liebana Garcia, Samuel; Sanz Perl Hernandez, Yonatan; Sporns, Olaf; Kringelbach, Morten L.; The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography; Nature; Communications Physics; 6; 1; 4-2023; 1-82399-3650CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s42005-023-01192-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:40:29Zoai:ri.conicet.gov.ar:11336/236429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:40:29.64CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography
title The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography
spellingShingle The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography
Deco, Gustavo
magnetoencephalography
Brain dynamics
Turbulent regime
Whole-brain modelling
title_short The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography
title_full The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography
title_fullStr The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography
title_full_unstemmed The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography
title_sort The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography
dc.creator.none.fl_str_mv Deco, Gustavo
Liebana Garcia, Samuel
Sanz Perl Hernandez, Yonatan
Sporns, Olaf
Kringelbach, Morten L.
author Deco, Gustavo
author_facet Deco, Gustavo
Liebana Garcia, Samuel
Sanz Perl Hernandez, Yonatan
Sporns, Olaf
Kringelbach, Morten L.
author_role author
author2 Liebana Garcia, Samuel
Sanz Perl Hernandez, Yonatan
Sporns, Olaf
Kringelbach, Morten L.
author2_role author
author
author
author
dc.subject.none.fl_str_mv magnetoencephalography
Brain dynamics
Turbulent regime
Whole-brain modelling
topic magnetoencephalography
Brain dynamics
Turbulent regime
Whole-brain modelling
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Fast, efficient information transfer is essential for the brain to ensure survival. As recently shown in functional magnetic resonance imaging with high spatial resolution, turbulence appears to offer a fundamental way to facilitate energy and information transfer across spatiotemporal scales in brain dynamics. However, given that this imaging modality is comparably slow and not directly linked with neuronal activity, here we investigated the existence of turbulence in fast whole-brain neural dynamics measured with magnetoencephalography (MEG). The coarse spatial observations in MEG necessitated that we created and validated a empirical measure of turbulence. We found that the measure of edge-centric metastability perfectly detected turbulence in a ring of non-local coupled oscillators where the ground-truth was analytically known, even at a coarse spatial scale of observations. This allowed us to use this measure in the spatially coarse, empirical large-scale MEG data from 89 human participants. We demonstrated turbulence in fast neuronal dynamics and used this to quantify information transfer in the brain. The results demonstrate that the necessary efficiency of brain function is dependent on an underlying turbulent regime.
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
Fil: Liebana Garcia, Samuel. University of Oxford; Reino Unido
Fil: Sanz Perl Hernandez, Yonatan. Universidad de Buenos Aires; Argentina. Universitat Pompeu Fabra; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sporns, Olaf. Indiana University; Estados Unidos
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido
description Fast, efficient information transfer is essential for the brain to ensure survival. As recently shown in functional magnetic resonance imaging with high spatial resolution, turbulence appears to offer a fundamental way to facilitate energy and information transfer across spatiotemporal scales in brain dynamics. However, given that this imaging modality is comparably slow and not directly linked with neuronal activity, here we investigated the existence of turbulence in fast whole-brain neural dynamics measured with magnetoencephalography (MEG). The coarse spatial observations in MEG necessitated that we created and validated a empirical measure of turbulence. We found that the measure of edge-centric metastability perfectly detected turbulence in a ring of non-local coupled oscillators where the ground-truth was analytically known, even at a coarse spatial scale of observations. This allowed us to use this measure in the spatially coarse, empirical large-scale MEG data from 89 human participants. We demonstrated turbulence in fast neuronal dynamics and used this to quantify information transfer in the brain. The results demonstrate that the necessary efficiency of brain function is dependent on an underlying turbulent regime.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/236429
Deco, Gustavo; Liebana Garcia, Samuel; Sanz Perl Hernandez, Yonatan; Sporns, Olaf; Kringelbach, Morten L.; The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography; Nature; Communications Physics; 6; 1; 4-2023; 1-8
2399-3650
CONICET Digital
CONICET
url http://hdl.handle.net/11336/236429
identifier_str_mv Deco, Gustavo; Liebana Garcia, Samuel; Sanz Perl Hernandez, Yonatan; Sporns, Olaf; Kringelbach, Morten L.; The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography; Nature; Communications Physics; 6; 1; 4-2023; 1-8
2399-3650
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s42005-023-01192-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082896980344832
score 13.22299