On Convex Functions and the Finite Element Method
- Autores
- Aguilera, Néstor Edgardo; Morin, Pedro
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many problems of theoretical and practical interest involve finding a convex or concave function.For instance, optimization problems such as finding the projection on the convex functions in $H^k(Omega)$, or some problems in economics.In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given.In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes.Using semidefinite programming codes, we show concrete examples of approximations to optimization problems.
Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Universidad Nacional del Litoral; Argentina - Materia
-
Finite Element Method
Optimization Problems
Convex Functions
Adaptive Meshes
Finite Element Method
Optimization Problems
Convex Functions
Adaptive Meshes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84278
Ver los metadatos del registro completo
id |
CONICETDig_9a8e3de9a201be21d1243f5ecec00f4b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84278 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Convex Functions and the Finite Element MethodAguilera, Néstor EdgardoMorin, PedroFinite Element MethodOptimization ProblemsConvex FunctionsAdaptive MeshesFinite Element MethodOptimization ProblemsConvex FunctionsAdaptive Mesheshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Many problems of theoretical and practical interest involve finding a convex or concave function.For instance, optimization problems such as finding the projection on the convex functions in $H^k(Omega)$, or some problems in economics.In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given.In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes.Using semidefinite programming codes, we show concrete examples of approximations to optimization problems.Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Universidad Nacional del Litoral; ArgentinaSociety for Industrial and Applied Mathematics2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84278Aguilera, Néstor Edgardo; Morin, Pedro; On Convex Functions and the Finite Element Method; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 47; 4; 12-2009; 3139-31570036-1429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/080720917info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:46Zoai:ri.conicet.gov.ar:11336/84278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:47.245CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Convex Functions and the Finite Element Method |
title |
On Convex Functions and the Finite Element Method |
spellingShingle |
On Convex Functions and the Finite Element Method Aguilera, Néstor Edgardo Finite Element Method Optimization Problems Convex Functions Adaptive Meshes Finite Element Method Optimization Problems Convex Functions Adaptive Meshes |
title_short |
On Convex Functions and the Finite Element Method |
title_full |
On Convex Functions and the Finite Element Method |
title_fullStr |
On Convex Functions and the Finite Element Method |
title_full_unstemmed |
On Convex Functions and the Finite Element Method |
title_sort |
On Convex Functions and the Finite Element Method |
dc.creator.none.fl_str_mv |
Aguilera, Néstor Edgardo Morin, Pedro |
author |
Aguilera, Néstor Edgardo |
author_facet |
Aguilera, Néstor Edgardo Morin, Pedro |
author_role |
author |
author2 |
Morin, Pedro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Finite Element Method Optimization Problems Convex Functions Adaptive Meshes Finite Element Method Optimization Problems Convex Functions Adaptive Meshes |
topic |
Finite Element Method Optimization Problems Convex Functions Adaptive Meshes Finite Element Method Optimization Problems Convex Functions Adaptive Meshes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many problems of theoretical and practical interest involve finding a convex or concave function.For instance, optimization problems such as finding the projection on the convex functions in $H^k(Omega)$, or some problems in economics.In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given.In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes.Using semidefinite programming codes, we show concrete examples of approximations to optimization problems. Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Morin, Pedro. Universidad Nacional del Litoral; Argentina |
description |
Many problems of theoretical and practical interest involve finding a convex or concave function.For instance, optimization problems such as finding the projection on the convex functions in $H^k(Omega)$, or some problems in economics.In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given.In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes.Using semidefinite programming codes, we show concrete examples of approximations to optimization problems. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84278 Aguilera, Néstor Edgardo; Morin, Pedro; On Convex Functions and the Finite Element Method; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 47; 4; 12-2009; 3139-3157 0036-1429 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84278 |
identifier_str_mv |
Aguilera, Néstor Edgardo; Morin, Pedro; On Convex Functions and the Finite Element Method; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 47; 4; 12-2009; 3139-3157 0036-1429 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1137/080720917 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269600508542976 |
score |
13.13397 |