Approximating optimization problems over convex functions
- Autores
- Aguilera, Néstor Edgardo; Morin, Pedro
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many problems of theoretical and practical interest involve finding an optimum over a family of convex functions. For instance, finding the projection on the convex functions in $H^k(Omega)$, and some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and functions with positive semidefinite discrete Hessian need not be convex in a discrete sense. Previous work has concentrated on non-local descriptions of convexity, making the number of constraints to grow super-linearly with the number of nodes even in dimension 2, and these descriptions are very difficult to extend to higher dimensions. In this paper we propose a finite difference approximation using positive semidefinite programs and discrete Hessians, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using positive semidefinite programming codes, we show concrete examples of approximations to problems in two and three dimensions.
Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Convex Functions
Optimization
Finite Differences - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84142
Ver los metadatos del registro completo
id |
CONICETDig_72cf22ef988a3ef4ea47bf4541d0358f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84142 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximating optimization problems over convex functionsAguilera, Néstor EdgardoMorin, PedroConvex FunctionsOptimizationFinite Differenceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Many problems of theoretical and practical interest involve finding an optimum over a family of convex functions. For instance, finding the projection on the convex functions in $H^k(Omega)$, and some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and functions with positive semidefinite discrete Hessian need not be convex in a discrete sense. Previous work has concentrated on non-local descriptions of convexity, making the number of constraints to grow super-linearly with the number of nodes even in dimension 2, and these descriptions are very difficult to extend to higher dimensions. In this paper we propose a finite difference approximation using positive semidefinite programs and discrete Hessians, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using positive semidefinite programming codes, we show concrete examples of approximations to problems in two and three dimensions.Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaSpringer2008-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84142Aguilera, Néstor Edgardo; Morin, Pedro; Approximating optimization problems over convex functions; Springer; Numerische Mathematik; 111; 1; 11-2008; 1-340029-599X0945-3245CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00211-008-0176-4info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0804.1693info:eu-repo/semantics/altIdentifier/doi/10.1007/s00211-008-0176-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:08Zoai:ri.conicet.gov.ar:11336/84142instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:08.98CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximating optimization problems over convex functions |
title |
Approximating optimization problems over convex functions |
spellingShingle |
Approximating optimization problems over convex functions Aguilera, Néstor Edgardo Convex Functions Optimization Finite Differences |
title_short |
Approximating optimization problems over convex functions |
title_full |
Approximating optimization problems over convex functions |
title_fullStr |
Approximating optimization problems over convex functions |
title_full_unstemmed |
Approximating optimization problems over convex functions |
title_sort |
Approximating optimization problems over convex functions |
dc.creator.none.fl_str_mv |
Aguilera, Néstor Edgardo Morin, Pedro |
author |
Aguilera, Néstor Edgardo |
author_facet |
Aguilera, Néstor Edgardo Morin, Pedro |
author_role |
author |
author2 |
Morin, Pedro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Convex Functions Optimization Finite Differences |
topic |
Convex Functions Optimization Finite Differences |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many problems of theoretical and practical interest involve finding an optimum over a family of convex functions. For instance, finding the projection on the convex functions in $H^k(Omega)$, and some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and functions with positive semidefinite discrete Hessian need not be convex in a discrete sense. Previous work has concentrated on non-local descriptions of convexity, making the number of constraints to grow super-linearly with the number of nodes even in dimension 2, and these descriptions are very difficult to extend to higher dimensions. In this paper we propose a finite difference approximation using positive semidefinite programs and discrete Hessians, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using positive semidefinite programming codes, we show concrete examples of approximations to problems in two and three dimensions. Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
Many problems of theoretical and practical interest involve finding an optimum over a family of convex functions. For instance, finding the projection on the convex functions in $H^k(Omega)$, and some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and functions with positive semidefinite discrete Hessian need not be convex in a discrete sense. Previous work has concentrated on non-local descriptions of convexity, making the number of constraints to grow super-linearly with the number of nodes even in dimension 2, and these descriptions are very difficult to extend to higher dimensions. In this paper we propose a finite difference approximation using positive semidefinite programs and discrete Hessians, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using positive semidefinite programming codes, we show concrete examples of approximations to problems in two and three dimensions. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84142 Aguilera, Néstor Edgardo; Morin, Pedro; Approximating optimization problems over convex functions; Springer; Numerische Mathematik; 111; 1; 11-2008; 1-34 0029-599X 0945-3245 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84142 |
identifier_str_mv |
Aguilera, Néstor Edgardo; Morin, Pedro; Approximating optimization problems over convex functions; Springer; Numerische Mathematik; 111; 1; 11-2008; 1-34 0029-599X 0945-3245 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00211-008-0176-4 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0804.1693 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00211-008-0176-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269442705195008 |
score |
13.13397 |