Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method
- Autores
- Quiroga, Andrés Agustin Ignacio; Fernández, Damián Andrés; Turner, Cristina Vilma; Torres, German Ariel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we present a method for estimating an unknown parameter that appears in a two dimensional non-linear reaction-diffusion model of cancer invasion. This model considers that tumor-induced alteration of micro-environmental pH provides a mechanism for cancer invasion. A coupled system reaction-diffusion describing this model is given by three partial differential equations for the 2D non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess H+ ion concentration. Each of the model parameters has a corresponding biological interpretation, for instance, the growth rate of neoplastic tissue, the diffusion coefficient, the re-absorption rate and the destructive influence of H+ ions in the healthy tissue. The parameter is estimated by solving a minimization problem, in which the objective function is defined in order to compare both the real data and the numerical solution of the cancer invasion model. The real data can be obtained by, for example, fluorescence ratio imaging microscopy. We apply a splitting strategy joint with the adaptive finite element method to numerically solve the model. The minimization problem (the inverse problem) is solved by using a gradient-based optimization method, in which the functional derivative is provided through an adjoint approach.
Fil: Quiroga, Andrés Agustin Ignacio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Fernández, Damián Andrés. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Turner, Cristina Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Torres, German Ariel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
ADAPTIVE FINITE ELEMENT METHOD
ADJOINT METHOD
PDE-CONSTRAINED OPTIMIZATION
REACTION-DIFFUSION 2D EQUATION
SPLITTING METHOD
TUMOR INVASION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111144
Ver los metadatos del registro completo
id |
CONICETDig_1575eac13e4220b08a8ba6665402fdf5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111144 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element methodQuiroga, Andrés Agustin IgnacioFernández, Damián AndrésTurner, Cristina VilmaTorres, German ArielADAPTIVE FINITE ELEMENT METHODADJOINT METHODPDE-CONSTRAINED OPTIMIZATIONREACTION-DIFFUSION 2D EQUATIONSPLITTING METHODTUMOR INVASIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we present a method for estimating an unknown parameter that appears in a two dimensional non-linear reaction-diffusion model of cancer invasion. This model considers that tumor-induced alteration of micro-environmental pH provides a mechanism for cancer invasion. A coupled system reaction-diffusion describing this model is given by three partial differential equations for the 2D non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess H+ ion concentration. Each of the model parameters has a corresponding biological interpretation, for instance, the growth rate of neoplastic tissue, the diffusion coefficient, the re-absorption rate and the destructive influence of H+ ions in the healthy tissue. The parameter is estimated by solving a minimization problem, in which the objective function is defined in order to compare both the real data and the numerical solution of the cancer invasion model. The real data can be obtained by, for example, fluorescence ratio imaging microscopy. We apply a splitting strategy joint with the adaptive finite element method to numerically solve the model. The minimization problem (the inverse problem) is solved by using a gradient-based optimization method, in which the functional derivative is provided through an adjoint approach.Fil: Quiroga, Andrés Agustin Ignacio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Fernández, Damián Andrés. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Turner, Cristina Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Torres, German Ariel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier Science Inc2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111144Quiroga, Andrés Agustin Ignacio; Fernández, Damián Andrés; Turner, Cristina Vilma; Torres, German Ariel; Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method; Elsevier Science Inc; Applied Mathematics and Computation; 270; 11-2015; 358-3680096-3003CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300315010930info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2015.08.038info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:44Zoai:ri.conicet.gov.ar:11336/111144instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:44.641CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method |
title |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method |
spellingShingle |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method Quiroga, Andrés Agustin Ignacio ADAPTIVE FINITE ELEMENT METHOD ADJOINT METHOD PDE-CONSTRAINED OPTIMIZATION REACTION-DIFFUSION 2D EQUATION SPLITTING METHOD TUMOR INVASION |
title_short |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method |
title_full |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method |
title_fullStr |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method |
title_full_unstemmed |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method |
title_sort |
Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method |
dc.creator.none.fl_str_mv |
Quiroga, Andrés Agustin Ignacio Fernández, Damián Andrés Turner, Cristina Vilma Torres, German Ariel |
author |
Quiroga, Andrés Agustin Ignacio |
author_facet |
Quiroga, Andrés Agustin Ignacio Fernández, Damián Andrés Turner, Cristina Vilma Torres, German Ariel |
author_role |
author |
author2 |
Fernández, Damián Andrés Turner, Cristina Vilma Torres, German Ariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ADAPTIVE FINITE ELEMENT METHOD ADJOINT METHOD PDE-CONSTRAINED OPTIMIZATION REACTION-DIFFUSION 2D EQUATION SPLITTING METHOD TUMOR INVASION |
topic |
ADAPTIVE FINITE ELEMENT METHOD ADJOINT METHOD PDE-CONSTRAINED OPTIMIZATION REACTION-DIFFUSION 2D EQUATION SPLITTING METHOD TUMOR INVASION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we present a method for estimating an unknown parameter that appears in a two dimensional non-linear reaction-diffusion model of cancer invasion. This model considers that tumor-induced alteration of micro-environmental pH provides a mechanism for cancer invasion. A coupled system reaction-diffusion describing this model is given by three partial differential equations for the 2D non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess H+ ion concentration. Each of the model parameters has a corresponding biological interpretation, for instance, the growth rate of neoplastic tissue, the diffusion coefficient, the re-absorption rate and the destructive influence of H+ ions in the healthy tissue. The parameter is estimated by solving a minimization problem, in which the objective function is defined in order to compare both the real data and the numerical solution of the cancer invasion model. The real data can be obtained by, for example, fluorescence ratio imaging microscopy. We apply a splitting strategy joint with the adaptive finite element method to numerically solve the model. The minimization problem (the inverse problem) is solved by using a gradient-based optimization method, in which the functional derivative is provided through an adjoint approach. Fil: Quiroga, Andrés Agustin Ignacio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Fernández, Damián Andrés. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Turner, Cristina Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Torres, German Ariel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
In this paper we present a method for estimating an unknown parameter that appears in a two dimensional non-linear reaction-diffusion model of cancer invasion. This model considers that tumor-induced alteration of micro-environmental pH provides a mechanism for cancer invasion. A coupled system reaction-diffusion describing this model is given by three partial differential equations for the 2D non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess H+ ion concentration. Each of the model parameters has a corresponding biological interpretation, for instance, the growth rate of neoplastic tissue, the diffusion coefficient, the re-absorption rate and the destructive influence of H+ ions in the healthy tissue. The parameter is estimated by solving a minimization problem, in which the objective function is defined in order to compare both the real data and the numerical solution of the cancer invasion model. The real data can be obtained by, for example, fluorescence ratio imaging microscopy. We apply a splitting strategy joint with the adaptive finite element method to numerically solve the model. The minimization problem (the inverse problem) is solved by using a gradient-based optimization method, in which the functional derivative is provided through an adjoint approach. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111144 Quiroga, Andrés Agustin Ignacio; Fernández, Damián Andrés; Turner, Cristina Vilma; Torres, German Ariel; Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method; Elsevier Science Inc; Applied Mathematics and Computation; 270; 11-2015; 358-368 0096-3003 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/111144 |
identifier_str_mv |
Quiroga, Andrés Agustin Ignacio; Fernández, Damián Andrés; Turner, Cristina Vilma; Torres, German Ariel; Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method; Elsevier Science Inc; Applied Mathematics and Computation; 270; 11-2015; 358-368 0096-3003 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300315010930 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2015.08.038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269598708137984 |
score |
13.13397 |