Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
- Autores
- Pianzola, Arturo; Stolin, Alexander
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras.
Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Stolin, Alexander. Chalmers University of Technology; Suecia. University Goteborg; Suecia - Materia
-
BELAVIN–DRINFELD
GALOIS COHOMOLOGY
LIE BIALGEBRA
QUANTUM GROUP
YANG–BAXTER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99307
Ver los metadatos del registro completo
id |
CONICETDig_9a7ebb797ebf661d9708129c3dccf78d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99307 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerationsPianzola, ArturoStolin, AlexanderBELAVIN–DRINFELDGALOIS COHOMOLOGYLIE BIALGEBRAQUANTUM GROUPYANG–BAXTERhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras.Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Stolin, Alexander. Chalmers University of Technology; Suecia. University Goteborg; SueciaSpringer2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99307Pianzola, Arturo; Stolin, Alexander; Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations; Springer; Bulletin of Mathematical Sciences; 8; 1; 4-2018; 1-141664-36071664-3615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-016-0094-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-016-0094-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:41Zoai:ri.conicet.gov.ar:11336/99307instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:41.422CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations |
title |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations |
spellingShingle |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations Pianzola, Arturo BELAVIN–DRINFELD GALOIS COHOMOLOGY LIE BIALGEBRA QUANTUM GROUP YANG–BAXTER |
title_short |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations |
title_full |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations |
title_fullStr |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations |
title_full_unstemmed |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations |
title_sort |
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations |
dc.creator.none.fl_str_mv |
Pianzola, Arturo Stolin, Alexander |
author |
Pianzola, Arturo |
author_facet |
Pianzola, Arturo Stolin, Alexander |
author_role |
author |
author2 |
Stolin, Alexander |
author2_role |
author |
dc.subject.none.fl_str_mv |
BELAVIN–DRINFELD GALOIS COHOMOLOGY LIE BIALGEBRA QUANTUM GROUP YANG–BAXTER |
topic |
BELAVIN–DRINFELD GALOIS COHOMOLOGY LIE BIALGEBRA QUANTUM GROUP YANG–BAXTER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras. Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Stolin, Alexander. Chalmers University of Technology; Suecia. University Goteborg; Suecia |
description |
We relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99307 Pianzola, Arturo; Stolin, Alexander; Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations; Springer; Bulletin of Mathematical Sciences; 8; 1; 4-2018; 1-14 1664-3607 1664-3615 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99307 |
identifier_str_mv |
Pianzola, Arturo; Stolin, Alexander; Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations; Springer; Bulletin of Mathematical Sciences; 8; 1; 4-2018; 1-14 1664-3607 1664-3615 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-016-0094-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-016-0094-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082671551184896 |
score |
13.22299 |