Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations

Autores
Pianzola, Arturo; Stolin, Alexander
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras.
Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Stolin, Alexander. Chalmers University of Technology; Suecia. University Goteborg; Suecia
Materia
BELAVIN–DRINFELD
GALOIS COHOMOLOGY
LIE BIALGEBRA
QUANTUM GROUP
YANG–BAXTER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99307

id CONICETDig_9a7ebb797ebf661d9708129c3dccf78d
oai_identifier_str oai:ri.conicet.gov.ar:11336/99307
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerationsPianzola, ArturoStolin, AlexanderBELAVIN–DRINFELDGALOIS COHOMOLOGYLIE BIALGEBRAQUANTUM GROUPYANG–BAXTERhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras.Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Stolin, Alexander. Chalmers University of Technology; Suecia. University Goteborg; SueciaSpringer2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99307Pianzola, Arturo; Stolin, Alexander; Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations; Springer; Bulletin of Mathematical Sciences; 8; 1; 4-2018; 1-141664-36071664-3615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-016-0094-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-016-0094-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:41Zoai:ri.conicet.gov.ar:11336/99307instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:41.422CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
title Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
spellingShingle Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
Pianzola, Arturo
BELAVIN–DRINFELD
GALOIS COHOMOLOGY
LIE BIALGEBRA
QUANTUM GROUP
YANG–BAXTER
title_short Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
title_full Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
title_fullStr Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
title_full_unstemmed Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
title_sort Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
dc.creator.none.fl_str_mv Pianzola, Arturo
Stolin, Alexander
author Pianzola, Arturo
author_facet Pianzola, Arturo
Stolin, Alexander
author_role author
author2 Stolin, Alexander
author2_role author
dc.subject.none.fl_str_mv BELAVIN–DRINFELD
GALOIS COHOMOLOGY
LIE BIALGEBRA
QUANTUM GROUP
YANG–BAXTER
topic BELAVIN–DRINFELD
GALOIS COHOMOLOGY
LIE BIALGEBRA
QUANTUM GROUP
YANG–BAXTER
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras.
Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Stolin, Alexander. Chalmers University of Technology; Suecia. University Goteborg; Suecia
description We relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99307
Pianzola, Arturo; Stolin, Alexander; Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations; Springer; Bulletin of Mathematical Sciences; 8; 1; 4-2018; 1-14
1664-3607
1664-3615
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99307
identifier_str_mv Pianzola, Arturo; Stolin, Alexander; Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations; Springer; Bulletin of Mathematical Sciences; 8; 1; 4-2018; 1-14
1664-3607
1664-3615
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-016-0094-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-016-0094-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082671551184896
score 13.22299