A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation
- Autores
- Farinati, Marco Andrés; Garcia Galofre, Juliana
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a set theoretical solution of the Yang–Baxter equation (X, σ), we define a d.g. bialgebra B = B(X, σ), containing the semigroup algebra A = k{X}/xy = zt : σ(x, y) = (z,t) , such that k ⊗A B ⊗A k and HomA−A(B, k) are respectively the homology and cohomology complexes computing biquandle homology and cohomology defined in [2,5] and other generalizations of cohomology of rack-quandle case (for example defined in [4]). This algebraic structure allows us to show the existence of an associative product in the cohomology of biquandles, and a comparison map with Hochschild (co)homology of the algebra A.
Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Garcia Galofre, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Yang Baxter Equation
Rack
Biquandles Biracks
Cohomology
Quandles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18914
Ver los metadatos del registro completo
| id |
CONICETDig_6372db9bcf35ced37828e3798c297548 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18914 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equationFarinati, Marco AndrésGarcia Galofre, JulianaYang Baxter EquationRackBiquandles BiracksCohomologyQuandleshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a set theoretical solution of the Yang–Baxter equation (X, σ), we define a d.g. bialgebra B = B(X, σ), containing the semigroup algebra A = k{X}/xy = zt : σ(x, y) = (z,t) , such that k ⊗A B ⊗A k and HomA−A(B, k) are respectively the homology and cohomology complexes computing biquandle homology and cohomology defined in [2,5] and other generalizations of cohomology of rack-quandle case (for example defined in [4]). This algebraic structure allows us to show the existence of an associative product in the cohomology of biquandles, and a comparison map with Hochschild (co)homology of the algebra A.Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Garcia Galofre, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18914Farinati, Marco Andrés; Garcia Galofre, Juliana; A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation; Elsevier Science; Journal Of Pure And Applied Algebra; 220; 10; 10-2016; 3454-34750022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2016.04.010info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022404916300184info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.07970info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:09:45Zoai:ri.conicet.gov.ar:11336/18914instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:09:45.366CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation |
| title |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation |
| spellingShingle |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation Farinati, Marco Andrés Yang Baxter Equation Rack Biquandles Biracks Cohomology Quandles |
| title_short |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation |
| title_full |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation |
| title_fullStr |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation |
| title_full_unstemmed |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation |
| title_sort |
A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation |
| dc.creator.none.fl_str_mv |
Farinati, Marco Andrés Garcia Galofre, Juliana |
| author |
Farinati, Marco Andrés |
| author_facet |
Farinati, Marco Andrés Garcia Galofre, Juliana |
| author_role |
author |
| author2 |
Garcia Galofre, Juliana |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Yang Baxter Equation Rack Biquandles Biracks Cohomology Quandles |
| topic |
Yang Baxter Equation Rack Biquandles Biracks Cohomology Quandles |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
For a set theoretical solution of the Yang–Baxter equation (X, σ), we define a d.g. bialgebra B = B(X, σ), containing the semigroup algebra A = k{X}/xy = zt : σ(x, y) = (z,t) , such that k ⊗A B ⊗A k and HomA−A(B, k) are respectively the homology and cohomology complexes computing biquandle homology and cohomology defined in [2,5] and other generalizations of cohomology of rack-quandle case (for example defined in [4]). This algebraic structure allows us to show the existence of an associative product in the cohomology of biquandles, and a comparison map with Hochschild (co)homology of the algebra A. Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Garcia Galofre, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
For a set theoretical solution of the Yang–Baxter equation (X, σ), we define a d.g. bialgebra B = B(X, σ), containing the semigroup algebra A = k{X}/xy = zt : σ(x, y) = (z,t) , such that k ⊗A B ⊗A k and HomA−A(B, k) are respectively the homology and cohomology complexes computing biquandle homology and cohomology defined in [2,5] and other generalizations of cohomology of rack-quandle case (for example defined in [4]). This algebraic structure allows us to show the existence of an associative product in the cohomology of biquandles, and a comparison map with Hochschild (co)homology of the algebra A. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18914 Farinati, Marco Andrés; Garcia Galofre, Juliana; A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation; Elsevier Science; Journal Of Pure And Applied Algebra; 220; 10; 10-2016; 3454-3475 0022-4049 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/18914 |
| identifier_str_mv |
Farinati, Marco Andrés; Garcia Galofre, Juliana; A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation; Elsevier Science; Journal Of Pure And Applied Algebra; 220; 10; 10-2016; 3454-3475 0022-4049 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2016.04.010 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022404916300184 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.07970 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977614860353536 |
| score |
13.087074 |