Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices
- Autores
- Rodriguez, Juan Manuel; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mobile devices have evolved from simple electronic agendas and mobile phones to small computers with great computational capabilities. In addition, there are more than 2 billion mobile devices around the world. Taking these facts into account, mobile devices are a potential source of computational resources for clusters and computational Grids. In this work, we present an analysis of different schedulers based on job stealing for mobile computational Grids. These job stealing techniques have been designed to consider energy consumption and battery status. As a result of this work, we present empirical evidence showing that energy-aware job stealing is more efficient than traditional random stealing in this context. In particular, our results show that mobile Grids using energy-aware job stealing might finish up to 11% more jobs than when using random stealing, and up to 24% more jobs than when not using any job stealing technique. This means that using energy-aware job stealing increases the energy efficiency of mobile computational Grids because it increases the number of jobs that can be executed using the same amount of energy.
Fil: Rodriguez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina - Materia
-
Mobile Grid
Mobile Devices
Job Stealing
Cpu Intensive Application
Job Scheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6779
Ver los metadatos del registro completo
id |
CONICETDig_9a3318034b05d2282bc586eb79567125 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6779 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile DevicesRodriguez, Juan ManuelMateos Diaz, Cristian MaximilianoZunino Suarez, Alejandro OctavioMobile GridMobile DevicesJob StealingCpu Intensive ApplicationJob Schedulinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Mobile devices have evolved from simple electronic agendas and mobile phones to small computers with great computational capabilities. In addition, there are more than 2 billion mobile devices around the world. Taking these facts into account, mobile devices are a potential source of computational resources for clusters and computational Grids. In this work, we present an analysis of different schedulers based on job stealing for mobile computational Grids. These job stealing techniques have been designed to consider energy consumption and battery status. As a result of this work, we present empirical evidence showing that energy-aware job stealing is more efficient than traditional random stealing in this context. In particular, our results show that mobile Grids using energy-aware job stealing might finish up to 11% more jobs than when using random stealing, and up to 24% more jobs than when not using any job stealing technique. This means that using energy-aware job stealing increases the energy efficiency of mobile computational Grids because it increases the number of jobs that can be executed using the same amount of energy.Fil: Rodriguez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSpringer Wien2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/zipapplication/zipapplication/pdfapplication/ziphttp://hdl.handle.net/11336/6779Rodriguez, Juan Manuel; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices; Springer Wien; Computing; 96; 2; 2-2014; 87-1170010-485Xenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00607-012-0245-5info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1007/s00607-012-0245-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:37:37Zoai:ri.conicet.gov.ar:11336/6779instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:37:38.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices |
title |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices |
spellingShingle |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices Rodriguez, Juan Manuel Mobile Grid Mobile Devices Job Stealing Cpu Intensive Application Job Scheduling |
title_short |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices |
title_full |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices |
title_fullStr |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices |
title_full_unstemmed |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices |
title_sort |
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices |
dc.creator.none.fl_str_mv |
Rodriguez, Juan Manuel Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author |
Rodriguez, Juan Manuel |
author_facet |
Rodriguez, Juan Manuel Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author_role |
author |
author2 |
Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Mobile Grid Mobile Devices Job Stealing Cpu Intensive Application Job Scheduling |
topic |
Mobile Grid Mobile Devices Job Stealing Cpu Intensive Application Job Scheduling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mobile devices have evolved from simple electronic agendas and mobile phones to small computers with great computational capabilities. In addition, there are more than 2 billion mobile devices around the world. Taking these facts into account, mobile devices are a potential source of computational resources for clusters and computational Grids. In this work, we present an analysis of different schedulers based on job stealing for mobile computational Grids. These job stealing techniques have been designed to consider energy consumption and battery status. As a result of this work, we present empirical evidence showing that energy-aware job stealing is more efficient than traditional random stealing in this context. In particular, our results show that mobile Grids using energy-aware job stealing might finish up to 11% more jobs than when using random stealing, and up to 24% more jobs than when not using any job stealing technique. This means that using energy-aware job stealing increases the energy efficiency of mobile computational Grids because it increases the number of jobs that can be executed using the same amount of energy. Fil: Rodriguez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina |
description |
Mobile devices have evolved from simple electronic agendas and mobile phones to small computers with great computational capabilities. In addition, there are more than 2 billion mobile devices around the world. Taking these facts into account, mobile devices are a potential source of computational resources for clusters and computational Grids. In this work, we present an analysis of different schedulers based on job stealing for mobile computational Grids. These job stealing techniques have been designed to consider energy consumption and battery status. As a result of this work, we present empirical evidence showing that energy-aware job stealing is more efficient than traditional random stealing in this context. In particular, our results show that mobile Grids using energy-aware job stealing might finish up to 11% more jobs than when using random stealing, and up to 24% more jobs than when not using any job stealing technique. This means that using energy-aware job stealing increases the energy efficiency of mobile computational Grids because it increases the number of jobs that can be executed using the same amount of energy. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6779 Rodriguez, Juan Manuel; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices; Springer Wien; Computing; 96; 2; 2-2014; 87-117 0010-485X |
url |
http://hdl.handle.net/11336/6779 |
identifier_str_mv |
Rodriguez, Juan Manuel; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices; Springer Wien; Computing; 96; 2; 2-2014; 87-117 0010-485X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00607-012-0245-5 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1007/s00607-012-0245-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf application/zip application/zip application/pdf application/zip |
dc.publisher.none.fl_str_mv |
Springer Wien |
publisher.none.fl_str_mv |
Springer Wien |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606734625570816 |
score |
13.001348 |