Simple Energy Aware Scheduler: An Empirical Evaluation

Autores
Pérez Campos, Ana Bella; Rodriguez, Juan Manuel; Zunino Suarez, Alejandro Octavio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mobile devices have evolved from single purpose devices, such as mobile phone, into general purpose multi-core computers with considerable unused capabilities. Therefore, several researchers have considered harnessing the power of these battery-powered devices for distributed computing. Despite their ever-growing capabilities, using battery as power source for mobile devices represents a major challenge for applying traditional distributed computing techniques. Particularly, researchers aimed at using mobile devices as resources for executing computationally intensive task. Different job scheduling algorithms were proposed with this aim, but many of them require information that is unavailable or difficult to obtain in real-life environments, such as how much energy would require a job to be finished. In this context, Simple Energy Aware Scheduler (SEAS) is a scheduling technique for computational intensive Mobile Grids that only require easily accessible information. It was proposed in 2010 and it has been the base for a range of research work. Despite being described as easily implementable in real-life scenarios, SEAS and other SEAS-improvements works have always been evaluated using simulations. In this work, we present a distributed computing platform for mobile devices that support SEAS and empirical evaluation of the SEAS scheduler. This evaluation followed the methodology of the original SEAS evaluation, in which Random and Round Robin schedulers were used as baselines. Although the original evaluation was performed by simulation using notebooks profile instead of smartphones and tablets, results confirms that SEAS outperforms the baseline schedulers.
Fil: Pérez Campos, Ana Bella. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; Argentina
Fil: Rodriguez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
MOBILE GRID
ENERGY AWARE SCHEDULER
JOB SCHEDULING
MOBILE DEVICE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/91014

id CONICETDig_750cb32882570daf02832669ce1e295f
oai_identifier_str oai:ri.conicet.gov.ar:11336/91014
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simple Energy Aware Scheduler: An Empirical EvaluationPérez Campos, Ana BellaRodriguez, Juan ManuelZunino Suarez, Alejandro OctavioMOBILE GRIDENERGY AWARE SCHEDULERJOB SCHEDULINGMOBILE DEVICEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Mobile devices have evolved from single purpose devices, such as mobile phone, into general purpose multi-core computers with considerable unused capabilities. Therefore, several researchers have considered harnessing the power of these battery-powered devices for distributed computing. Despite their ever-growing capabilities, using battery as power source for mobile devices represents a major challenge for applying traditional distributed computing techniques. Particularly, researchers aimed at using mobile devices as resources for executing computationally intensive task. Different job scheduling algorithms were proposed with this aim, but many of them require information that is unavailable or difficult to obtain in real-life environments, such as how much energy would require a job to be finished. In this context, Simple Energy Aware Scheduler (SEAS) is a scheduling technique for computational intensive Mobile Grids that only require easily accessible information. It was proposed in 2010 and it has been the base for a range of research work. Despite being described as easily implementable in real-life scenarios, SEAS and other SEAS-improvements works have always been evaluated using simulations. In this work, we present a distributed computing platform for mobile devices that support SEAS and empirical evaluation of the SEAS scheduler. This evaluation followed the methodology of the original SEAS evaluation, in which Random and Round Robin schedulers were used as baselines. Although the original evaluation was performed by simulation using notebooks profile instead of smartphones and tablets, results confirms that SEAS outperforms the baseline schedulers.Fil: Pérez Campos, Ana Bella. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; ArgentinaFil: Rodriguez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaCLEI2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91014Pérez Campos, Ana Bella; Rodriguez, Juan Manuel; Zunino Suarez, Alejandro Octavio; Simple Energy Aware Scheduler: An Empirical Evaluation; CLEI; CLEI Electronic Journal; 21; 2; 8-2018; 1-160717-5000CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.clei.org/cleiej/index.php/cleiej/article/view/46info:eu-repo/semantics/altIdentifier/doi/10.19153/cleiej.21.2.8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:25Zoai:ri.conicet.gov.ar:11336/91014instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:26.005CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simple Energy Aware Scheduler: An Empirical Evaluation
title Simple Energy Aware Scheduler: An Empirical Evaluation
spellingShingle Simple Energy Aware Scheduler: An Empirical Evaluation
Pérez Campos, Ana Bella
MOBILE GRID
ENERGY AWARE SCHEDULER
JOB SCHEDULING
MOBILE DEVICE
title_short Simple Energy Aware Scheduler: An Empirical Evaluation
title_full Simple Energy Aware Scheduler: An Empirical Evaluation
title_fullStr Simple Energy Aware Scheduler: An Empirical Evaluation
title_full_unstemmed Simple Energy Aware Scheduler: An Empirical Evaluation
title_sort Simple Energy Aware Scheduler: An Empirical Evaluation
dc.creator.none.fl_str_mv Pérez Campos, Ana Bella
Rodriguez, Juan Manuel
Zunino Suarez, Alejandro Octavio
author Pérez Campos, Ana Bella
author_facet Pérez Campos, Ana Bella
Rodriguez, Juan Manuel
Zunino Suarez, Alejandro Octavio
author_role author
author2 Rodriguez, Juan Manuel
Zunino Suarez, Alejandro Octavio
author2_role author
author
dc.subject.none.fl_str_mv MOBILE GRID
ENERGY AWARE SCHEDULER
JOB SCHEDULING
MOBILE DEVICE
topic MOBILE GRID
ENERGY AWARE SCHEDULER
JOB SCHEDULING
MOBILE DEVICE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mobile devices have evolved from single purpose devices, such as mobile phone, into general purpose multi-core computers with considerable unused capabilities. Therefore, several researchers have considered harnessing the power of these battery-powered devices for distributed computing. Despite their ever-growing capabilities, using battery as power source for mobile devices represents a major challenge for applying traditional distributed computing techniques. Particularly, researchers aimed at using mobile devices as resources for executing computationally intensive task. Different job scheduling algorithms were proposed with this aim, but many of them require information that is unavailable or difficult to obtain in real-life environments, such as how much energy would require a job to be finished. In this context, Simple Energy Aware Scheduler (SEAS) is a scheduling technique for computational intensive Mobile Grids that only require easily accessible information. It was proposed in 2010 and it has been the base for a range of research work. Despite being described as easily implementable in real-life scenarios, SEAS and other SEAS-improvements works have always been evaluated using simulations. In this work, we present a distributed computing platform for mobile devices that support SEAS and empirical evaluation of the SEAS scheduler. This evaluation followed the methodology of the original SEAS evaluation, in which Random and Round Robin schedulers were used as baselines. Although the original evaluation was performed by simulation using notebooks profile instead of smartphones and tablets, results confirms that SEAS outperforms the baseline schedulers.
Fil: Pérez Campos, Ana Bella. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; Argentina
Fil: Rodriguez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description Mobile devices have evolved from single purpose devices, such as mobile phone, into general purpose multi-core computers with considerable unused capabilities. Therefore, several researchers have considered harnessing the power of these battery-powered devices for distributed computing. Despite their ever-growing capabilities, using battery as power source for mobile devices represents a major challenge for applying traditional distributed computing techniques. Particularly, researchers aimed at using mobile devices as resources for executing computationally intensive task. Different job scheduling algorithms were proposed with this aim, but many of them require information that is unavailable or difficult to obtain in real-life environments, such as how much energy would require a job to be finished. In this context, Simple Energy Aware Scheduler (SEAS) is a scheduling technique for computational intensive Mobile Grids that only require easily accessible information. It was proposed in 2010 and it has been the base for a range of research work. Despite being described as easily implementable in real-life scenarios, SEAS and other SEAS-improvements works have always been evaluated using simulations. In this work, we present a distributed computing platform for mobile devices that support SEAS and empirical evaluation of the SEAS scheduler. This evaluation followed the methodology of the original SEAS evaluation, in which Random and Round Robin schedulers were used as baselines. Although the original evaluation was performed by simulation using notebooks profile instead of smartphones and tablets, results confirms that SEAS outperforms the baseline schedulers.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/91014
Pérez Campos, Ana Bella; Rodriguez, Juan Manuel; Zunino Suarez, Alejandro Octavio; Simple Energy Aware Scheduler: An Empirical Evaluation; CLEI; CLEI Electronic Journal; 21; 2; 8-2018; 1-16
0717-5000
CONICET Digital
CONICET
url http://hdl.handle.net/11336/91014
identifier_str_mv Pérez Campos, Ana Bella; Rodriguez, Juan Manuel; Zunino Suarez, Alejandro Octavio; Simple Energy Aware Scheduler: An Empirical Evaluation; CLEI; CLEI Electronic Journal; 21; 2; 8-2018; 1-16
0717-5000
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.clei.org/cleiej/index.php/cleiej/article/view/46
info:eu-repo/semantics/altIdentifier/doi/10.19153/cleiej.21.2.8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv CLEI
publisher.none.fl_str_mv CLEI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083124670234624
score 13.22299