Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns
- Autores
- Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Divergences or similarity measures between probability distributions have become a very useful tool for studying different aspects of statistical objects, such as time series, networks, and images. Notably, not every divergence provides identical results when applied to the same problem. Therefore, it seems convenient to have the widest possible set of divergences to be applied to the problems under study. Besides this choice, an essential step in the analysis of every statistical object is the mapping of each one of their representing values into an alphabet of symbols conveniently chosen. In this work, we choose the family of divergences known as the Burbea–Rao centroids (BRCs). For the mapping of the original time series into a symbolic sequence, we work with the ordinal pattern scheme. We apply our proposals to analyze simulated and real time series and to real textured images. The main conclusion of our work is that the best BRC, at least in the studied cases, is the Jensen–Shannon divergence, besides the fact that it verifies some interesting formal properties.
Fil: Mateos, Diego Martín. Universidad Autónoma de Entre Ríos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
Rao Buerbea Centroids
Time series analysis
Geometric properties of divergences - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239011
Ver los metadatos del registro completo
id |
CONICETDig_99e8a0d7b504ba61f9f37fcb8ff68d0c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239011 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patternsMateos, Diego MartínRiveaud, Leonardo EstebanLamberti, Pedro WalterRao Buerbea CentroidsTime series analysisGeometric properties of divergenceshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Divergences or similarity measures between probability distributions have become a very useful tool for studying different aspects of statistical objects, such as time series, networks, and images. Notably, not every divergence provides identical results when applied to the same problem. Therefore, it seems convenient to have the widest possible set of divergences to be applied to the problems under study. Besides this choice, an essential step in the analysis of every statistical object is the mapping of each one of their representing values into an alphabet of symbols conveniently chosen. In this work, we choose the family of divergences known as the Burbea–Rao centroids (BRCs). For the mapping of the original time series into a symbolic sequence, we work with the ordinal pattern scheme. We apply our proposals to analyze simulated and real time series and to real textured images. The main conclusion of our work is that the best BRC, at least in the studied cases, is the Jensen–Shannon divergence, besides the fact that it verifies some interesting formal properties.Fil: Mateos, Diego Martín. Universidad Autónoma de Entre Ríos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue; ArgentinaFil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaAmerican Institute of Physics2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239011Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns; American Institute of Physics; Chaos; 33; 3; 3-2023; 1-111054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/3/033144/2881413/Rao-Burbea-centroids-applied-to-the-statisticalinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0136240info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:51Zoai:ri.conicet.gov.ar:11336/239011instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:51.313CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns |
title |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns |
spellingShingle |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns Mateos, Diego Martín Rao Buerbea Centroids Time series analysis Geometric properties of divergences |
title_short |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns |
title_full |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns |
title_fullStr |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns |
title_full_unstemmed |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns |
title_sort |
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns |
dc.creator.none.fl_str_mv |
Mateos, Diego Martín Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author |
Mateos, Diego Martín |
author_facet |
Mateos, Diego Martín Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author_role |
author |
author2 |
Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Rao Buerbea Centroids Time series analysis Geometric properties of divergences |
topic |
Rao Buerbea Centroids Time series analysis Geometric properties of divergences |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Divergences or similarity measures between probability distributions have become a very useful tool for studying different aspects of statistical objects, such as time series, networks, and images. Notably, not every divergence provides identical results when applied to the same problem. Therefore, it seems convenient to have the widest possible set of divergences to be applied to the problems under study. Besides this choice, an essential step in the analysis of every statistical object is the mapping of each one of their representing values into an alphabet of symbols conveniently chosen. In this work, we choose the family of divergences known as the Burbea–Rao centroids (BRCs). For the mapping of the original time series into a symbolic sequence, we work with the ordinal pattern scheme. We apply our proposals to analyze simulated and real time series and to real textured images. The main conclusion of our work is that the best BRC, at least in the studied cases, is the Jensen–Shannon divergence, besides the fact that it verifies some interesting formal properties. Fil: Mateos, Diego Martín. Universidad Autónoma de Entre Ríos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue; Argentina Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
Divergences or similarity measures between probability distributions have become a very useful tool for studying different aspects of statistical objects, such as time series, networks, and images. Notably, not every divergence provides identical results when applied to the same problem. Therefore, it seems convenient to have the widest possible set of divergences to be applied to the problems under study. Besides this choice, an essential step in the analysis of every statistical object is the mapping of each one of their representing values into an alphabet of symbols conveniently chosen. In this work, we choose the family of divergences known as the Burbea–Rao centroids (BRCs). For the mapping of the original time series into a symbolic sequence, we work with the ordinal pattern scheme. We apply our proposals to analyze simulated and real time series and to real textured images. The main conclusion of our work is that the best BRC, at least in the studied cases, is the Jensen–Shannon divergence, besides the fact that it verifies some interesting formal properties. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239011 Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns; American Institute of Physics; Chaos; 33; 3; 3-2023; 1-11 1054-1500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239011 |
identifier_str_mv |
Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns; American Institute of Physics; Chaos; 33; 3; 3-2023; 1-11 1054-1500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/3/033144/2881413/Rao-Burbea-centroids-applied-to-the-statistical info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0136240 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269977103564800 |
score |
13.13397 |