Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential

Autores
Schwerdt, José Ignacio; Goya, Gerardo F.; Calatayud, M. Pilar; Hereñú, Claudia Beatriz; Reggiani, Paula Cecilia; Goya, Rodolfo Gustavo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The discovery in the early 2000´s that magnetic nanoparticles (MNPs) complexed to nonviral or viral vectors can, in the presence of an external magnetic field, greatly enhance gene transfer into cells has raised much interest. This technique, called magnetofection, was initially developed mainly to improve gene transfer in cell cultures, a simpler and more easily controllable scenario than in vivo models. These studies provided evidence for some unique capabilities of magnetofection. Progressively, the interest in magnetofection expanded to its application in animal models and led to the association of this technique with another technology, magnetic drug targeting (MDT). This combination offers the possibility to develop more efficient and less invasive gene therapy strategies for a number of major pathologies like cancer, neurodegeneration and myocardial infarction. The goal of MDT is to concentrate MNPs functionalized with therapeutic drugs, in target areas of the body by means of properly focused external magnetic fields. The availability of stable, nontoxic MNP-gene vector complexes now offers the opportunity to develop magnetic gene targeting (MGT), a variant of MDT in which the gene coding for a therapeutic molecule, rather than the molecule itself, is delivered to a therapeutic target area in the body. This article will first outline the principle of magnetofection, subsequently describing the properties of the magnetic fields and MNPs used in this technique. Next, it will review the results achieved by magnetofection in cell cultures. Last, the potential of MGT for implementing minimally invasive gene therapy will be discussed.
Fil: Schwerdt, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina
Fil: Goya, Gerardo F.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Calatayud, M. Pilar. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina
Fil: Reggiani, Paula Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina
Fil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina
Materia
Gene delivery
Magnetic nanoparticles
Magnetofection
Nanomedicine
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275263

id CONICETDig_99994e4070c48d936df1e38cdbd030bd
oai_identifier_str oai:ri.conicet.gov.ar:11336/275263
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic PotentialSchwerdt, José IgnacioGoya, Gerardo F.Calatayud, M. PilarHereñú, Claudia BeatrizReggiani, Paula CeciliaGoya, Rodolfo GustavoGene deliveryMagnetic nanoparticlesMagnetofectionNanomedicinehttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The discovery in the early 2000´s that magnetic nanoparticles (MNPs) complexed to nonviral or viral vectors can, in the presence of an external magnetic field, greatly enhance gene transfer into cells has raised much interest. This technique, called magnetofection, was initially developed mainly to improve gene transfer in cell cultures, a simpler and more easily controllable scenario than in vivo models. These studies provided evidence for some unique capabilities of magnetofection. Progressively, the interest in magnetofection expanded to its application in animal models and led to the association of this technique with another technology, magnetic drug targeting (MDT). This combination offers the possibility to develop more efficient and less invasive gene therapy strategies for a number of major pathologies like cancer, neurodegeneration and myocardial infarction. The goal of MDT is to concentrate MNPs functionalized with therapeutic drugs, in target areas of the body by means of properly focused external magnetic fields. The availability of stable, nontoxic MNP-gene vector complexes now offers the opportunity to develop magnetic gene targeting (MGT), a variant of MDT in which the gene coding for a therapeutic molecule, rather than the molecule itself, is delivered to a therapeutic target area in the body. This article will first outline the principle of magnetofection, subsequently describing the properties of the magnetic fields and MNPs used in this technique. Next, it will review the results achieved by magnetofection in cell cultures. Last, the potential of MGT for implementing minimally invasive gene therapy will be discussed.Fil: Schwerdt, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Goya, Gerardo F.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Calatayud, M. Pilar. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Reggiani, Paula Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaBentham Science Publishers2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275263Schwerdt, José Ignacio; Goya, Gerardo F.; Calatayud, M. Pilar; Hereñú, Claudia Beatriz; Reggiani, Paula Cecilia; et al.; Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential; Bentham Science Publishers; Current Gene Therapy; 12; 2; 4-2012; 116-1261566-5232CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.eurekaselect.com/article/41422info:eu-repo/semantics/altIdentifier/doi/10.2174/156652312800099616info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:35:08Zoai:ri.conicet.gov.ar:11336/275263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:35:08.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential
title Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential
spellingShingle Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential
Schwerdt, José Ignacio
Gene delivery
Magnetic nanoparticles
Magnetofection
Nanomedicine
title_short Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential
title_full Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential
title_fullStr Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential
title_full_unstemmed Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential
title_sort Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential
dc.creator.none.fl_str_mv Schwerdt, José Ignacio
Goya, Gerardo F.
Calatayud, M. Pilar
Hereñú, Claudia Beatriz
Reggiani, Paula Cecilia
Goya, Rodolfo Gustavo
author Schwerdt, José Ignacio
author_facet Schwerdt, José Ignacio
Goya, Gerardo F.
Calatayud, M. Pilar
Hereñú, Claudia Beatriz
Reggiani, Paula Cecilia
Goya, Rodolfo Gustavo
author_role author
author2 Goya, Gerardo F.
Calatayud, M. Pilar
Hereñú, Claudia Beatriz
Reggiani, Paula Cecilia
Goya, Rodolfo Gustavo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Gene delivery
Magnetic nanoparticles
Magnetofection
Nanomedicine
topic Gene delivery
Magnetic nanoparticles
Magnetofection
Nanomedicine
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv The discovery in the early 2000´s that magnetic nanoparticles (MNPs) complexed to nonviral or viral vectors can, in the presence of an external magnetic field, greatly enhance gene transfer into cells has raised much interest. This technique, called magnetofection, was initially developed mainly to improve gene transfer in cell cultures, a simpler and more easily controllable scenario than in vivo models. These studies provided evidence for some unique capabilities of magnetofection. Progressively, the interest in magnetofection expanded to its application in animal models and led to the association of this technique with another technology, magnetic drug targeting (MDT). This combination offers the possibility to develop more efficient and less invasive gene therapy strategies for a number of major pathologies like cancer, neurodegeneration and myocardial infarction. The goal of MDT is to concentrate MNPs functionalized with therapeutic drugs, in target areas of the body by means of properly focused external magnetic fields. The availability of stable, nontoxic MNP-gene vector complexes now offers the opportunity to develop magnetic gene targeting (MGT), a variant of MDT in which the gene coding for a therapeutic molecule, rather than the molecule itself, is delivered to a therapeutic target area in the body. This article will first outline the principle of magnetofection, subsequently describing the properties of the magnetic fields and MNPs used in this technique. Next, it will review the results achieved by magnetofection in cell cultures. Last, the potential of MGT for implementing minimally invasive gene therapy will be discussed.
Fil: Schwerdt, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina
Fil: Goya, Gerardo F.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Calatayud, M. Pilar. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina
Fil: Reggiani, Paula Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina
Fil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina
description The discovery in the early 2000´s that magnetic nanoparticles (MNPs) complexed to nonviral or viral vectors can, in the presence of an external magnetic field, greatly enhance gene transfer into cells has raised much interest. This technique, called magnetofection, was initially developed mainly to improve gene transfer in cell cultures, a simpler and more easily controllable scenario than in vivo models. These studies provided evidence for some unique capabilities of magnetofection. Progressively, the interest in magnetofection expanded to its application in animal models and led to the association of this technique with another technology, magnetic drug targeting (MDT). This combination offers the possibility to develop more efficient and less invasive gene therapy strategies for a number of major pathologies like cancer, neurodegeneration and myocardial infarction. The goal of MDT is to concentrate MNPs functionalized with therapeutic drugs, in target areas of the body by means of properly focused external magnetic fields. The availability of stable, nontoxic MNP-gene vector complexes now offers the opportunity to develop magnetic gene targeting (MGT), a variant of MDT in which the gene coding for a therapeutic molecule, rather than the molecule itself, is delivered to a therapeutic target area in the body. This article will first outline the principle of magnetofection, subsequently describing the properties of the magnetic fields and MNPs used in this technique. Next, it will review the results achieved by magnetofection in cell cultures. Last, the potential of MGT for implementing minimally invasive gene therapy will be discussed.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275263
Schwerdt, José Ignacio; Goya, Gerardo F.; Calatayud, M. Pilar; Hereñú, Claudia Beatriz; Reggiani, Paula Cecilia; et al.; Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential; Bentham Science Publishers; Current Gene Therapy; 12; 2; 4-2012; 116-126
1566-5232
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275263
identifier_str_mv Schwerdt, José Ignacio; Goya, Gerardo F.; Calatayud, M. Pilar; Hereñú, Claudia Beatriz; Reggiani, Paula Cecilia; et al.; Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential; Bentham Science Publishers; Current Gene Therapy; 12; 2; 4-2012; 116-126
1566-5232
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.eurekaselect.com/article/41422
info:eu-repo/semantics/altIdentifier/doi/10.2174/156652312800099616
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Bentham Science Publishers
publisher.none.fl_str_mv Bentham Science Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1850504462893842432
score 13.214268