Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells

Autores
Pereyra, Andrea Soledad; Mykhaylyk, Olga; Falomir Lockhart, Eugenia; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñú, Claudia Beatriz
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.
Fil: Pereyra, Andrea Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Mykhaylyk, Olga. Technische Universitat Munchen; Alemania
Fil: Falomir Lockhart, Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Taylor, Jackson Richard. University Wake Forest; Estados Unidos
Fil: Delbono, Osvaldo. University Wake Forest; Estados Unidos
Fil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Plank, Christian. Technische Universitat Munchen; Alemania
Fil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Materia
Gene Delivery
Skeletal Muscle
Magnetic Nanoparticles
Adenoviral Vectors
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51671

id CONICETDig_e227607edabfbb7525d9326dcefeba9c
oai_identifier_str oai:ri.conicet.gov.ar:11336/51671
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle CellsPereyra, Andrea SoledadMykhaylyk, OlgaFalomir Lockhart, EugeniaTaylor, Jackson RichardDelbono, OsvaldoGoya, Rodolfo GustavoPlank, ChristianHereñú, Claudia BeatrizGene DeliverySkeletal MuscleMagnetic NanoparticlesAdenoviral Vectorshttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.Fil: Pereyra, Andrea Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Mykhaylyk, Olga. Technische Universitat Munchen; AlemaniaFil: Falomir Lockhart, Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Taylor, Jackson Richard. University Wake Forest; Estados UnidosFil: Delbono, Osvaldo. University Wake Forest; Estados UnidosFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Plank, Christian. Technische Universitat Munchen; AlemaniaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaOMICS International2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51671Pereyra, Andrea Soledad; Mykhaylyk, Olga; Falomir Lockhart, Eugenia; Taylor, Jackson Richard; Delbono, Osvaldo; et al.; Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells; OMICS International; Journal of Nanomedicine & Nanotechnology; 7; 2; 4-2016; 1-112157-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4172/2157-7439.1000364info:eu-repo/semantics/altIdentifier/url/https://www.omicsonline.org/open-access/magnetofection-enhances-adenoviral-vectorbased-gene-delivery-inskeletal-muscle-cells-2157-7439-1000364.php?aid=71417info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823129/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:27Zoai:ri.conicet.gov.ar:11336/51671instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:27.945CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
title Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
spellingShingle Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
Pereyra, Andrea Soledad
Gene Delivery
Skeletal Muscle
Magnetic Nanoparticles
Adenoviral Vectors
title_short Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
title_full Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
title_fullStr Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
title_full_unstemmed Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
title_sort Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
dc.creator.none.fl_str_mv Pereyra, Andrea Soledad
Mykhaylyk, Olga
Falomir Lockhart, Eugenia
Taylor, Jackson Richard
Delbono, Osvaldo
Goya, Rodolfo Gustavo
Plank, Christian
Hereñú, Claudia Beatriz
author Pereyra, Andrea Soledad
author_facet Pereyra, Andrea Soledad
Mykhaylyk, Olga
Falomir Lockhart, Eugenia
Taylor, Jackson Richard
Delbono, Osvaldo
Goya, Rodolfo Gustavo
Plank, Christian
Hereñú, Claudia Beatriz
author_role author
author2 Mykhaylyk, Olga
Falomir Lockhart, Eugenia
Taylor, Jackson Richard
Delbono, Osvaldo
Goya, Rodolfo Gustavo
Plank, Christian
Hereñú, Claudia Beatriz
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Gene Delivery
Skeletal Muscle
Magnetic Nanoparticles
Adenoviral Vectors
topic Gene Delivery
Skeletal Muscle
Magnetic Nanoparticles
Adenoviral Vectors
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.
Fil: Pereyra, Andrea Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Mykhaylyk, Olga. Technische Universitat Munchen; Alemania
Fil: Falomir Lockhart, Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Taylor, Jackson Richard. University Wake Forest; Estados Unidos
Fil: Delbono, Osvaldo. University Wake Forest; Estados Unidos
Fil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Plank, Christian. Technische Universitat Munchen; Alemania
Fil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
description The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51671
Pereyra, Andrea Soledad; Mykhaylyk, Olga; Falomir Lockhart, Eugenia; Taylor, Jackson Richard; Delbono, Osvaldo; et al.; Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells; OMICS International; Journal of Nanomedicine & Nanotechnology; 7; 2; 4-2016; 1-11
2157-7439
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51671
identifier_str_mv Pereyra, Andrea Soledad; Mykhaylyk, Olga; Falomir Lockhart, Eugenia; Taylor, Jackson Richard; Delbono, Osvaldo; et al.; Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells; OMICS International; Journal of Nanomedicine & Nanotechnology; 7; 2; 4-2016; 1-11
2157-7439
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4172/2157-7439.1000364
info:eu-repo/semantics/altIdentifier/url/https://www.omicsonline.org/open-access/magnetofection-enhances-adenoviral-vectorbased-gene-delivery-inskeletal-muscle-cells-2157-7439-1000364.php?aid=71417
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823129/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv OMICS International
publisher.none.fl_str_mv OMICS International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613337688571904
score 13.069144