Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells
- Autores
- Pereyra, Andrea Soledad; Mykhaylyk, Olga; Falomir Lockhart, Eugenia; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñú, Claudia Beatriz
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.
Fil: Pereyra, Andrea Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Mykhaylyk, Olga. Technische Universitat Munchen; Alemania
Fil: Falomir Lockhart, Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Taylor, Jackson Richard. University Wake Forest; Estados Unidos
Fil: Delbono, Osvaldo. University Wake Forest; Estados Unidos
Fil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina
Fil: Plank, Christian. Technische Universitat Munchen; Alemania
Fil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina - Materia
-
Gene Delivery
Skeletal Muscle
Magnetic Nanoparticles
Adenoviral Vectors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51671
Ver los metadatos del registro completo
id |
CONICETDig_e227607edabfbb7525d9326dcefeba9c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51671 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle CellsPereyra, Andrea SoledadMykhaylyk, OlgaFalomir Lockhart, EugeniaTaylor, Jackson RichardDelbono, OsvaldoGoya, Rodolfo GustavoPlank, ChristianHereñú, Claudia BeatrizGene DeliverySkeletal MuscleMagnetic NanoparticlesAdenoviral Vectorshttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.Fil: Pereyra, Andrea Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Mykhaylyk, Olga. Technische Universitat Munchen; AlemaniaFil: Falomir Lockhart, Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Taylor, Jackson Richard. University Wake Forest; Estados UnidosFil: Delbono, Osvaldo. University Wake Forest; Estados UnidosFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Plank, Christian. Technische Universitat Munchen; AlemaniaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaOMICS International2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51671Pereyra, Andrea Soledad; Mykhaylyk, Olga; Falomir Lockhart, Eugenia; Taylor, Jackson Richard; Delbono, Osvaldo; et al.; Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells; OMICS International; Journal of Nanomedicine & Nanotechnology; 7; 2; 4-2016; 1-112157-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4172/2157-7439.1000364info:eu-repo/semantics/altIdentifier/url/https://www.omicsonline.org/open-access/magnetofection-enhances-adenoviral-vectorbased-gene-delivery-inskeletal-muscle-cells-2157-7439-1000364.php?aid=71417info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823129/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:27Zoai:ri.conicet.gov.ar:11336/51671instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:27.945CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells |
title |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells |
spellingShingle |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells Pereyra, Andrea Soledad Gene Delivery Skeletal Muscle Magnetic Nanoparticles Adenoviral Vectors |
title_short |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells |
title_full |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells |
title_fullStr |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells |
title_full_unstemmed |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells |
title_sort |
Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells |
dc.creator.none.fl_str_mv |
Pereyra, Andrea Soledad Mykhaylyk, Olga Falomir Lockhart, Eugenia Taylor, Jackson Richard Delbono, Osvaldo Goya, Rodolfo Gustavo Plank, Christian Hereñú, Claudia Beatriz |
author |
Pereyra, Andrea Soledad |
author_facet |
Pereyra, Andrea Soledad Mykhaylyk, Olga Falomir Lockhart, Eugenia Taylor, Jackson Richard Delbono, Osvaldo Goya, Rodolfo Gustavo Plank, Christian Hereñú, Claudia Beatriz |
author_role |
author |
author2 |
Mykhaylyk, Olga Falomir Lockhart, Eugenia Taylor, Jackson Richard Delbono, Osvaldo Goya, Rodolfo Gustavo Plank, Christian Hereñú, Claudia Beatriz |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Gene Delivery Skeletal Muscle Magnetic Nanoparticles Adenoviral Vectors |
topic |
Gene Delivery Skeletal Muscle Magnetic Nanoparticles Adenoviral Vectors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. Fil: Pereyra, Andrea Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina Fil: Mykhaylyk, Olga. Technische Universitat Munchen; Alemania Fil: Falomir Lockhart, Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina Fil: Taylor, Jackson Richard. University Wake Forest; Estados Unidos Fil: Delbono, Osvaldo. University Wake Forest; Estados Unidos Fil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina Fil: Plank, Christian. Technische Universitat Munchen; Alemania Fil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina |
description |
The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51671 Pereyra, Andrea Soledad; Mykhaylyk, Olga; Falomir Lockhart, Eugenia; Taylor, Jackson Richard; Delbono, Osvaldo; et al.; Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells; OMICS International; Journal of Nanomedicine & Nanotechnology; 7; 2; 4-2016; 1-11 2157-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51671 |
identifier_str_mv |
Pereyra, Andrea Soledad; Mykhaylyk, Olga; Falomir Lockhart, Eugenia; Taylor, Jackson Richard; Delbono, Osvaldo; et al.; Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells; OMICS International; Journal of Nanomedicine & Nanotechnology; 7; 2; 4-2016; 1-11 2157-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4172/2157-7439.1000364 info:eu-repo/semantics/altIdentifier/url/https://www.omicsonline.org/open-access/magnetofection-enhances-adenoviral-vectorbased-gene-delivery-inskeletal-muscle-cells-2157-7439-1000364.php?aid=71417 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823129/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
OMICS International |
publisher.none.fl_str_mv |
OMICS International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613337688571904 |
score |
13.069144 |