Stable partitions in many division problems: the proportional and the sequential dictator solutions

Autores
Bergantiños, Gustavo; Jordi, Massó Carreras; Moreno de Barreda, Inés; Neme, Alejandro José
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study how to partition a set of agents in a stable way when each coalition in the partition has to share a unit of a perfectly divisible good, and each agent has symmetric single-peaked preferences on the unit interval of his potential shares. A rule on the set of preference profiles consists of a partition function and a solution. Given a preference profile, a partition is selected and as many units of the good as the number of coalitions in the partition are allocated, where each unit is shared among all agents belonging to the same coalition according to the solution. A rule is stable at a preference profile if no agent strictly prefers to leave his coalition to join another coalition and all members of the receiving coalition want to admit him. We show that the proportional solution and all sequential dictator solutions admit stable partition functions. We also show that stability is a strong requirement that becomes easily incompatible with other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness.
Fil: Bergantiños, Gustavo. Universidad de Vigo; España
Fil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; España
Fil: Moreno de Barreda, Inés. University of Oxford; Reino Unido
Fil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
DIVISION PROBLEM
STABLE PARTITION
SYMMETRIC SINGLE-PEAKED PREFERENCES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60780

id CONICETDig_986e9d862a5d3792043f4ccccf316807
oai_identifier_str oai:ri.conicet.gov.ar:11336/60780
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stable partitions in many division problems: the proportional and the sequential dictator solutionsBergantiños, GustavoJordi, Massó CarrerasMoreno de Barreda, InésNeme, Alejandro JoséDIVISION PROBLEMSTABLE PARTITIONSYMMETRIC SINGLE-PEAKED PREFERENCEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study how to partition a set of agents in a stable way when each coalition in the partition has to share a unit of a perfectly divisible good, and each agent has symmetric single-peaked preferences on the unit interval of his potential shares. A rule on the set of preference profiles consists of a partition function and a solution. Given a preference profile, a partition is selected and as many units of the good as the number of coalitions in the partition are allocated, where each unit is shared among all agents belonging to the same coalition according to the solution. A rule is stable at a preference profile if no agent strictly prefers to leave his coalition to join another coalition and all members of the receiving coalition want to admit him. We show that the proportional solution and all sequential dictator solutions admit stable partition functions. We also show that stability is a strong requirement that becomes easily incompatible with other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness.Fil: Bergantiños, Gustavo. Universidad de Vigo; EspañaFil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; EspañaFil: Moreno de Barreda, Inés. University of Oxford; Reino UnidoFil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaSpringer2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60780Bergantiños, Gustavo; Jordi, Massó Carreras; Moreno de Barreda, Inés; Neme, Alejandro José; Stable partitions in many division problems: the proportional and the sequential dictator solutions; Springer; Theory And Decision; 79; 2; 9-2015; 227-2500040-58331573-7187CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11238-014-9467-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11238-014-9467-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:57Zoai:ri.conicet.gov.ar:11336/60780instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:57.722CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stable partitions in many division problems: the proportional and the sequential dictator solutions
title Stable partitions in many division problems: the proportional and the sequential dictator solutions
spellingShingle Stable partitions in many division problems: the proportional and the sequential dictator solutions
Bergantiños, Gustavo
DIVISION PROBLEM
STABLE PARTITION
SYMMETRIC SINGLE-PEAKED PREFERENCES
title_short Stable partitions in many division problems: the proportional and the sequential dictator solutions
title_full Stable partitions in many division problems: the proportional and the sequential dictator solutions
title_fullStr Stable partitions in many division problems: the proportional and the sequential dictator solutions
title_full_unstemmed Stable partitions in many division problems: the proportional and the sequential dictator solutions
title_sort Stable partitions in many division problems: the proportional and the sequential dictator solutions
dc.creator.none.fl_str_mv Bergantiños, Gustavo
Jordi, Massó Carreras
Moreno de Barreda, Inés
Neme, Alejandro José
author Bergantiños, Gustavo
author_facet Bergantiños, Gustavo
Jordi, Massó Carreras
Moreno de Barreda, Inés
Neme, Alejandro José
author_role author
author2 Jordi, Massó Carreras
Moreno de Barreda, Inés
Neme, Alejandro José
author2_role author
author
author
dc.subject.none.fl_str_mv DIVISION PROBLEM
STABLE PARTITION
SYMMETRIC SINGLE-PEAKED PREFERENCES
topic DIVISION PROBLEM
STABLE PARTITION
SYMMETRIC SINGLE-PEAKED PREFERENCES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study how to partition a set of agents in a stable way when each coalition in the partition has to share a unit of a perfectly divisible good, and each agent has symmetric single-peaked preferences on the unit interval of his potential shares. A rule on the set of preference profiles consists of a partition function and a solution. Given a preference profile, a partition is selected and as many units of the good as the number of coalitions in the partition are allocated, where each unit is shared among all agents belonging to the same coalition according to the solution. A rule is stable at a preference profile if no agent strictly prefers to leave his coalition to join another coalition and all members of the receiving coalition want to admit him. We show that the proportional solution and all sequential dictator solutions admit stable partition functions. We also show that stability is a strong requirement that becomes easily incompatible with other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness.
Fil: Bergantiños, Gustavo. Universidad de Vigo; España
Fil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; España
Fil: Moreno de Barreda, Inés. University of Oxford; Reino Unido
Fil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description We study how to partition a set of agents in a stable way when each coalition in the partition has to share a unit of a perfectly divisible good, and each agent has symmetric single-peaked preferences on the unit interval of his potential shares. A rule on the set of preference profiles consists of a partition function and a solution. Given a preference profile, a partition is selected and as many units of the good as the number of coalitions in the partition are allocated, where each unit is shared among all agents belonging to the same coalition according to the solution. A rule is stable at a preference profile if no agent strictly prefers to leave his coalition to join another coalition and all members of the receiving coalition want to admit him. We show that the proportional solution and all sequential dictator solutions admit stable partition functions. We also show that stability is a strong requirement that becomes easily incompatible with other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60780
Bergantiños, Gustavo; Jordi, Massó Carreras; Moreno de Barreda, Inés; Neme, Alejandro José; Stable partitions in many division problems: the proportional and the sequential dictator solutions; Springer; Theory And Decision; 79; 2; 9-2015; 227-250
0040-5833
1573-7187
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60780
identifier_str_mv Bergantiños, Gustavo; Jordi, Massó Carreras; Moreno de Barreda, Inés; Neme, Alejandro José; Stable partitions in many division problems: the proportional and the sequential dictator solutions; Springer; Theory And Decision; 79; 2; 9-2015; 227-250
0040-5833
1573-7187
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11238-014-9467-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11238-014-9467-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782236836233216
score 12.982451