Stable partitions in many division problems: the proportional and the sequential dictator solutions
- Autores
- Bergantiños, Gustavo; Jordi, Massó Carreras; Moreno de Barreda, Inés; Neme, Alejandro José
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study how to partition a set of agents in a stable way when each coalition in the partition has to share a unit of a perfectly divisible good, and each agent has symmetric single-peaked preferences on the unit interval of his potential shares. A rule on the set of preference profiles consists of a partition function and a solution. Given a preference profile, a partition is selected and as many units of the good as the number of coalitions in the partition are allocated, where each unit is shared among all agents belonging to the same coalition according to the solution. A rule is stable at a preference profile if no agent strictly prefers to leave his coalition to join another coalition and all members of the receiving coalition want to admit him. We show that the proportional solution and all sequential dictator solutions admit stable partition functions. We also show that stability is a strong requirement that becomes easily incompatible with other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness.
Fil: Bergantiños, Gustavo. Universidad de Vigo; España
Fil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; España
Fil: Moreno de Barreda, Inés. University of Oxford; Reino Unido
Fil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
DIVISION PROBLEM
STABLE PARTITION
SYMMETRIC SINGLE-PEAKED PREFERENCES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60780
Ver los metadatos del registro completo
| id |
CONICETDig_986e9d862a5d3792043f4ccccf316807 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60780 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Stable partitions in many division problems: the proportional and the sequential dictator solutionsBergantiños, GustavoJordi, Massó CarrerasMoreno de Barreda, InésNeme, Alejandro JoséDIVISION PROBLEMSTABLE PARTITIONSYMMETRIC SINGLE-PEAKED PREFERENCEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study how to partition a set of agents in a stable way when each coalition in the partition has to share a unit of a perfectly divisible good, and each agent has symmetric single-peaked preferences on the unit interval of his potential shares. A rule on the set of preference profiles consists of a partition function and a solution. Given a preference profile, a partition is selected and as many units of the good as the number of coalitions in the partition are allocated, where each unit is shared among all agents belonging to the same coalition according to the solution. A rule is stable at a preference profile if no agent strictly prefers to leave his coalition to join another coalition and all members of the receiving coalition want to admit him. We show that the proportional solution and all sequential dictator solutions admit stable partition functions. We also show that stability is a strong requirement that becomes easily incompatible with other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness.Fil: Bergantiños, Gustavo. Universidad de Vigo; EspañaFil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; EspañaFil: Moreno de Barreda, Inés. University of Oxford; Reino UnidoFil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaSpringer2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60780Bergantiños, Gustavo; Jordi, Massó Carreras; Moreno de Barreda, Inés; Neme, Alejandro José; Stable partitions in many division problems: the proportional and the sequential dictator solutions; Springer; Theory And Decision; 79; 2; 9-2015; 227-2500040-58331573-7187CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11238-014-9467-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11238-014-9467-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:57Zoai:ri.conicet.gov.ar:11336/60780instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:57.722CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Stable partitions in many division problems: the proportional and the sequential dictator solutions |
| title |
Stable partitions in many division problems: the proportional and the sequential dictator solutions |
| spellingShingle |
Stable partitions in many division problems: the proportional and the sequential dictator solutions Bergantiños, Gustavo DIVISION PROBLEM STABLE PARTITION SYMMETRIC SINGLE-PEAKED PREFERENCES |
| title_short |
Stable partitions in many division problems: the proportional and the sequential dictator solutions |
| title_full |
Stable partitions in many division problems: the proportional and the sequential dictator solutions |
| title_fullStr |
Stable partitions in many division problems: the proportional and the sequential dictator solutions |
| title_full_unstemmed |
Stable partitions in many division problems: the proportional and the sequential dictator solutions |
| title_sort |
Stable partitions in many division problems: the proportional and the sequential dictator solutions |
| dc.creator.none.fl_str_mv |
Bergantiños, Gustavo Jordi, Massó Carreras Moreno de Barreda, Inés Neme, Alejandro José |
| author |
Bergantiños, Gustavo |
| author_facet |
Bergantiños, Gustavo Jordi, Massó Carreras Moreno de Barreda, Inés Neme, Alejandro José |
| author_role |
author |
| author2 |
Jordi, Massó Carreras Moreno de Barreda, Inés Neme, Alejandro José |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
DIVISION PROBLEM STABLE PARTITION SYMMETRIC SINGLE-PEAKED PREFERENCES |
| topic |
DIVISION PROBLEM STABLE PARTITION SYMMETRIC SINGLE-PEAKED PREFERENCES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study how to partition a set of agents in a stable way when each coalition in the partition has to share a unit of a perfectly divisible good, and each agent has symmetric single-peaked preferences on the unit interval of his potential shares. A rule on the set of preference profiles consists of a partition function and a solution. Given a preference profile, a partition is selected and as many units of the good as the number of coalitions in the partition are allocated, where each unit is shared among all agents belonging to the same coalition according to the solution. A rule is stable at a preference profile if no agent strictly prefers to leave his coalition to join another coalition and all members of the receiving coalition want to admit him. We show that the proportional solution and all sequential dictator solutions admit stable partition functions. We also show that stability is a strong requirement that becomes easily incompatible with other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness. Fil: Bergantiños, Gustavo. Universidad de Vigo; España Fil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; España Fil: Moreno de Barreda, Inés. University of Oxford; Reino Unido Fil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
| description |
We study how to partition a set of agents in a stable way when each coalition in the partition has to share a unit of a perfectly divisible good, and each agent has symmetric single-peaked preferences on the unit interval of his potential shares. A rule on the set of preference profiles consists of a partition function and a solution. Given a preference profile, a partition is selected and as many units of the good as the number of coalitions in the partition are allocated, where each unit is shared among all agents belonging to the same coalition according to the solution. A rule is stable at a preference profile if no agent strictly prefers to leave his coalition to join another coalition and all members of the receiving coalition want to admit him. We show that the proportional solution and all sequential dictator solutions admit stable partition functions. We also show that stability is a strong requirement that becomes easily incompatible with other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60780 Bergantiños, Gustavo; Jordi, Massó Carreras; Moreno de Barreda, Inés; Neme, Alejandro José; Stable partitions in many division problems: the proportional and the sequential dictator solutions; Springer; Theory And Decision; 79; 2; 9-2015; 227-250 0040-5833 1573-7187 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/60780 |
| identifier_str_mv |
Bergantiños, Gustavo; Jordi, Massó Carreras; Moreno de Barreda, Inés; Neme, Alejandro José; Stable partitions in many division problems: the proportional and the sequential dictator solutions; Springer; Theory And Decision; 79; 2; 9-2015; 227-250 0040-5833 1573-7187 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11238-014-9467-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11238-014-9467-7 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782236836233216 |
| score |
12.982451 |