Balanced many-to-one matching problems with preferences over colleages

Autores
Cesco, Juan Carlos
Año de publicación
2016
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Matching problems is a well studied class of coalitions formation models. Several core-like type solutions have been proposed for these models. However, unlike what happens in game theory, no balancedness properties have been introduced to study existence problems so far. In this paper we state a balancedness condition on a many-to-one matching problem with preferences over colleagues which turns to be a necessary and sufficient condition to guarantee the non-emptiness of the set of core matchings. We use this result to improve a recent characterization about the existence of core matchings for the classical many-to-one matching problem without preferences over colleagues. Our approach has been carried out by using some techniques and results from the theory of hedonic games, which is another class of coalitions formation models.
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
14º Simposio Argentino de Investigación Operativa
Buenos Aires
Argentina
Universidad de Tres de Febrero
Sociedad Argentina de Informática
Materia
MATCHING PROBLEMS
PREFERENCES OVER COLLEAGUES
CORE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/236219

id CONICETDig_7f82dfa0b0c6c5e7660b7abb56d73dab
oai_identifier_str oai:ri.conicet.gov.ar:11336/236219
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Balanced many-to-one matching problems with preferences over colleagesCesco, Juan CarlosMATCHING PROBLEMSPREFERENCES OVER COLLEAGUESCOREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Matching problems is a well studied class of coalitions formation models. Several core-like type solutions have been proposed for these models. However, unlike what happens in game theory, no balancedness properties have been introduced to study existence problems so far. In this paper we state a balancedness condition on a many-to-one matching problem with preferences over colleagues which turns to be a necessary and sufficient condition to guarantee the non-emptiness of the set of core matchings. We use this result to improve a recent characterization about the existence of core matchings for the classical many-to-one matching problem without preferences over colleagues. Our approach has been carried out by using some techniques and results from the theory of hedonic games, which is another class of coalitions formation models.Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina14º Simposio Argentino de Investigación OperativaBuenos AiresArgentinaUniversidad de Tres de FebreroSociedad Argentina de InformáticaSociedad Argentina de Informática2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectSimposioJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236219Balanced many-to-one matching problems with preferences over colleages; 14º Simposio Argentino de Investigación Operativa; Buenos Aires; Argentina; 2016; 37-472451-7550CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://45jaiio.sadio.org.ar/node/117.htmlinfo:eu-repo/semantics/altIdentifier/url/https://45jaiio.sadio.org.ar/sites/default/files/Sio-21.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:11Zoai:ri.conicet.gov.ar:11336/236219instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:11.546CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Balanced many-to-one matching problems with preferences over colleages
title Balanced many-to-one matching problems with preferences over colleages
spellingShingle Balanced many-to-one matching problems with preferences over colleages
Cesco, Juan Carlos
MATCHING PROBLEMS
PREFERENCES OVER COLLEAGUES
CORE
title_short Balanced many-to-one matching problems with preferences over colleages
title_full Balanced many-to-one matching problems with preferences over colleages
title_fullStr Balanced many-to-one matching problems with preferences over colleages
title_full_unstemmed Balanced many-to-one matching problems with preferences over colleages
title_sort Balanced many-to-one matching problems with preferences over colleages
dc.creator.none.fl_str_mv Cesco, Juan Carlos
author Cesco, Juan Carlos
author_facet Cesco, Juan Carlos
author_role author
dc.subject.none.fl_str_mv MATCHING PROBLEMS
PREFERENCES OVER COLLEAGUES
CORE
topic MATCHING PROBLEMS
PREFERENCES OVER COLLEAGUES
CORE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Matching problems is a well studied class of coalitions formation models. Several core-like type solutions have been proposed for these models. However, unlike what happens in game theory, no balancedness properties have been introduced to study existence problems so far. In this paper we state a balancedness condition on a many-to-one matching problem with preferences over colleagues which turns to be a necessary and sufficient condition to guarantee the non-emptiness of the set of core matchings. We use this result to improve a recent characterization about the existence of core matchings for the classical many-to-one matching problem without preferences over colleagues. Our approach has been carried out by using some techniques and results from the theory of hedonic games, which is another class of coalitions formation models.
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
14º Simposio Argentino de Investigación Operativa
Buenos Aires
Argentina
Universidad de Tres de Febrero
Sociedad Argentina de Informática
description Matching problems is a well studied class of coalitions formation models. Several core-like type solutions have been proposed for these models. However, unlike what happens in game theory, no balancedness properties have been introduced to study existence problems so far. In this paper we state a balancedness condition on a many-to-one matching problem with preferences over colleagues which turns to be a necessary and sufficient condition to guarantee the non-emptiness of the set of core matchings. We use this result to improve a recent characterization about the existence of core matchings for the classical many-to-one matching problem without preferences over colleagues. Our approach has been carried out by using some techniques and results from the theory of hedonic games, which is another class of coalitions formation models.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Simposio
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/236219
Balanced many-to-one matching problems with preferences over colleages; 14º Simposio Argentino de Investigación Operativa; Buenos Aires; Argentina; 2016; 37-47
2451-7550
CONICET Digital
CONICET
url http://hdl.handle.net/11336/236219
identifier_str_mv Balanced many-to-one matching problems with preferences over colleages; 14º Simposio Argentino de Investigación Operativa; Buenos Aires; Argentina; 2016; 37-47
2451-7550
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://45jaiio.sadio.org.ar/node/117.html
info:eu-repo/semantics/altIdentifier/url/https://45jaiio.sadio.org.ar/sites/default/files/Sio-21.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Sociedad Argentina de Informática
publisher.none.fl_str_mv Sociedad Argentina de Informática
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269992972713984
score 12.885934