Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems
- Autores
- Casaretto, Gimena; Schwartz, Craig S.; Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study applies the ensemble forecast sensitivity to observation impact (EFSOI) technique to two 80-member ensemble Kalman filter (EnKF) data assimilation (DA) systems over the United States, differing only in cycling strategy: continuous cycling (CC) and partial cycling (PC). EFSOI calculations were performed using 1-, 6-, and 12-h evaluation forecast times, verified against the Rapid Refresh (RAP) model analysis. Beneficial impact rates indicated that most observations were beneficial for both DA systems and forecast times, with no significant difference between PC and CC. Differences in cumulative observation impacts were statistically significant only for sources with few observations and small impacts, like mesonet observations. For numerous and impactful observations, such as rawinsondes and aircraft, differences were not statistically significant, suggesting similar use of important observations by PC and CC. PC forecasts were better than CC forecasts, but this improvement is not clearly due to better use of observations. Variable-wise analysis showed similar behavior between PC and CC for impact rates and cumulative impacts of U, V, T, relative humidity (RH), and surface zonal wind. Overall, there was no evidence that either PC or CC systematically used observations better, with mixed results across observation types and sources. Differences between PC and CC were typically small and not statistically significant for the most impactful observations and variables. Fundamental methodological differences between PC and CC did not significantly impact their ability to assimilate observations, with the process of ingesting global fields likely responsible for improved PC forecasts relative to CC.
Fil: Casaretto, Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaría de Planeamiento. Servicio Meteorológico Nacional. Servicio Meteorológico Nacional (sede Dorrego); Argentina
Fil: Schwartz, Craig S.. National Center for Atmospheric Research; Estados Unidos
Fil: Dillon, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaría de Planeamiento. Servicio Meteorológico Nacional. Servicio Meteorológico Nacional (sede Dorrego); Argentina
Fil: Garcia Skabar, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina - Materia
-
OBSERVATION IMPACT
ENSEMBLE FORECAST
CONTINUOUS AND PARTIAL CYCLING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/267468
Ver los metadatos del registro completo
id |
CONICETDig_97b81b57a38af6492135891b761af5b6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/267468 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation SystemsCasaretto, GimenaSchwartz, Craig S.Dillon, María EugeniaGarcia Skabar, YaninaRuiz, Juan JoseOBSERVATION IMPACTENSEMBLE FORECASTCONTINUOUS AND PARTIAL CYCLINGhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1This study applies the ensemble forecast sensitivity to observation impact (EFSOI) technique to two 80-member ensemble Kalman filter (EnKF) data assimilation (DA) systems over the United States, differing only in cycling strategy: continuous cycling (CC) and partial cycling (PC). EFSOI calculations were performed using 1-, 6-, and 12-h evaluation forecast times, verified against the Rapid Refresh (RAP) model analysis. Beneficial impact rates indicated that most observations were beneficial for both DA systems and forecast times, with no significant difference between PC and CC. Differences in cumulative observation impacts were statistically significant only for sources with few observations and small impacts, like mesonet observations. For numerous and impactful observations, such as rawinsondes and aircraft, differences were not statistically significant, suggesting similar use of important observations by PC and CC. PC forecasts were better than CC forecasts, but this improvement is not clearly due to better use of observations. Variable-wise analysis showed similar behavior between PC and CC for impact rates and cumulative impacts of U, V, T, relative humidity (RH), and surface zonal wind. Overall, there was no evidence that either PC or CC systematically used observations better, with mixed results across observation types and sources. Differences between PC and CC were typically small and not statistically significant for the most impactful observations and variables. Fundamental methodological differences between PC and CC did not significantly impact their ability to assimilate observations, with the process of ingesting global fields likely responsible for improved PC forecasts relative to CC.Fil: Casaretto, Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaría de Planeamiento. Servicio Meteorológico Nacional. Servicio Meteorológico Nacional (sede Dorrego); ArgentinaFil: Schwartz, Craig S.. National Center for Atmospheric Research; Estados UnidosFil: Dillon, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaría de Planeamiento. Servicio Meteorológico Nacional. Servicio Meteorológico Nacional (sede Dorrego); ArgentinaFil: Garcia Skabar, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; ArgentinaFil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaAmerican Meteorological Society2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267468Casaretto, Gimena; Schwartz, Craig S.; Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems; American Meteorological Society; Weather and Forecasting; 40; 6; 6-2025; 781-7940882-8156CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/view/journals/wefo/aop/WAF-D-24-0127.1/WAF-D-24-0127.1.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1175/WAF-D-24-0127.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:37Zoai:ri.conicet.gov.ar:11336/267468instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:37.734CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
title |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
spellingShingle |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems Casaretto, Gimena OBSERVATION IMPACT ENSEMBLE FORECAST CONTINUOUS AND PARTIAL CYCLING |
title_short |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
title_full |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
title_fullStr |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
title_full_unstemmed |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
title_sort |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
dc.creator.none.fl_str_mv |
Casaretto, Gimena Schwartz, Craig S. Dillon, María Eugenia Garcia Skabar, Yanina Ruiz, Juan Jose |
author |
Casaretto, Gimena |
author_facet |
Casaretto, Gimena Schwartz, Craig S. Dillon, María Eugenia Garcia Skabar, Yanina Ruiz, Juan Jose |
author_role |
author |
author2 |
Schwartz, Craig S. Dillon, María Eugenia Garcia Skabar, Yanina Ruiz, Juan Jose |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
OBSERVATION IMPACT ENSEMBLE FORECAST CONTINUOUS AND PARTIAL CYCLING |
topic |
OBSERVATION IMPACT ENSEMBLE FORECAST CONTINUOUS AND PARTIAL CYCLING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This study applies the ensemble forecast sensitivity to observation impact (EFSOI) technique to two 80-member ensemble Kalman filter (EnKF) data assimilation (DA) systems over the United States, differing only in cycling strategy: continuous cycling (CC) and partial cycling (PC). EFSOI calculations were performed using 1-, 6-, and 12-h evaluation forecast times, verified against the Rapid Refresh (RAP) model analysis. Beneficial impact rates indicated that most observations were beneficial for both DA systems and forecast times, with no significant difference between PC and CC. Differences in cumulative observation impacts were statistically significant only for sources with few observations and small impacts, like mesonet observations. For numerous and impactful observations, such as rawinsondes and aircraft, differences were not statistically significant, suggesting similar use of important observations by PC and CC. PC forecasts were better than CC forecasts, but this improvement is not clearly due to better use of observations. Variable-wise analysis showed similar behavior between PC and CC for impact rates and cumulative impacts of U, V, T, relative humidity (RH), and surface zonal wind. Overall, there was no evidence that either PC or CC systematically used observations better, with mixed results across observation types and sources. Differences between PC and CC were typically small and not statistically significant for the most impactful observations and variables. Fundamental methodological differences between PC and CC did not significantly impact their ability to assimilate observations, with the process of ingesting global fields likely responsible for improved PC forecasts relative to CC. Fil: Casaretto, Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaría de Planeamiento. Servicio Meteorológico Nacional. Servicio Meteorológico Nacional (sede Dorrego); Argentina Fil: Schwartz, Craig S.. National Center for Atmospheric Research; Estados Unidos Fil: Dillon, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaría de Planeamiento. Servicio Meteorológico Nacional. Servicio Meteorológico Nacional (sede Dorrego); Argentina Fil: Garcia Skabar, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina |
description |
This study applies the ensemble forecast sensitivity to observation impact (EFSOI) technique to two 80-member ensemble Kalman filter (EnKF) data assimilation (DA) systems over the United States, differing only in cycling strategy: continuous cycling (CC) and partial cycling (PC). EFSOI calculations were performed using 1-, 6-, and 12-h evaluation forecast times, verified against the Rapid Refresh (RAP) model analysis. Beneficial impact rates indicated that most observations were beneficial for both DA systems and forecast times, with no significant difference between PC and CC. Differences in cumulative observation impacts were statistically significant only for sources with few observations and small impacts, like mesonet observations. For numerous and impactful observations, such as rawinsondes and aircraft, differences were not statistically significant, suggesting similar use of important observations by PC and CC. PC forecasts were better than CC forecasts, but this improvement is not clearly due to better use of observations. Variable-wise analysis showed similar behavior between PC and CC for impact rates and cumulative impacts of U, V, T, relative humidity (RH), and surface zonal wind. Overall, there was no evidence that either PC or CC systematically used observations better, with mixed results across observation types and sources. Differences between PC and CC were typically small and not statistically significant for the most impactful observations and variables. Fundamental methodological differences between PC and CC did not significantly impact their ability to assimilate observations, with the process of ingesting global fields likely responsible for improved PC forecasts relative to CC. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/267468 Casaretto, Gimena; Schwartz, Craig S.; Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems; American Meteorological Society; Weather and Forecasting; 40; 6; 6-2025; 781-794 0882-8156 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/267468 |
identifier_str_mv |
Casaretto, Gimena; Schwartz, Craig S.; Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems; American Meteorological Society; Weather and Forecasting; 40; 6; 6-2025; 781-794 0882-8156 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/view/journals/wefo/aop/WAF-D-24-0127.1/WAF-D-24-0127.1.xml info:eu-repo/semantics/altIdentifier/doi/10.1175/WAF-D-24-0127.1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Meteorological Society |
publisher.none.fl_str_mv |
American Meteorological Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614447754117120 |
score |
13.070432 |