Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble
- Autores
- Craig, George C.; Puh, Matjaž; Keil, Christian; Tempest, Kirsten; Necker, Tobias; Ruiz, Juan Jose; Weissmann, Martin; Miyoshi, Takemasa
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The errors in numerical weather forecasts resulting from limited ensemble size are explored using 1,000-member forecasts of convective weather over Germany at 3-km resolution. A large number of forecast variables at different lead times were examined, and their distributions could be classified into three categories: quasi-normal (e.g., tropospheric temperature), highly skewed (e.g. precipitation), and mixtures (e.g., humidity). Dependence on ensemble size was examined in comparison to the asymptotic convergence law that the sampling error decreases proportional to N−1/2 for large enough ensemble size N, independent of the underlying distribution shape. The asymptotic convergence behavior was observed for the ensemble mean of all forecast variables, even for ensemble sizes less than 10. For the ensemble standard deviation, sizes of up to 100 were required for the convergence law to apply. In contrast, there was no clear sign of convergence for the 95th percentile even with 1,000 members. Methods such as neighborhood statistics or prediction of area-averaged quantities were found to improve accuracy, but only for variables with random small-scale variability, such as convective precipitation.
Fil: Craig, George C.. Ludwig Maximilians Universitat; Alemania
Fil: Puh, Matjaž. Ludwig Maximilians Universitat; Alemania
Fil: Keil, Christian. Ludwig Maximilians Universitat; Alemania
Fil: Tempest, Kirsten. Ludwig Maximilians Universitat; Alemania
Fil: Necker, Tobias. Universidad de Viena; Austria
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Weissmann, Martin. Universidad de Viena; Austria
Fil: Miyoshi, Takemasa. Riken Center For Computational Science; Japón - Materia
-
ENSEMBLE
FORECAST UNCERTAINTY
PROBABILITY DISTRIBUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213084
Ver los metadatos del registro completo
id |
CONICETDig_193a80639b4a45e3ddf9064744876b34 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213084 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensembleCraig, George C.Puh, MatjažKeil, ChristianTempest, KirstenNecker, TobiasRuiz, Juan JoseWeissmann, MartinMiyoshi, TakemasaENSEMBLEFORECAST UNCERTAINTYPROBABILITY DISTRIBUTIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The errors in numerical weather forecasts resulting from limited ensemble size are explored using 1,000-member forecasts of convective weather over Germany at 3-km resolution. A large number of forecast variables at different lead times were examined, and their distributions could be classified into three categories: quasi-normal (e.g., tropospheric temperature), highly skewed (e.g. precipitation), and mixtures (e.g., humidity). Dependence on ensemble size was examined in comparison to the asymptotic convergence law that the sampling error decreases proportional to N−1/2 for large enough ensemble size N, independent of the underlying distribution shape. The asymptotic convergence behavior was observed for the ensemble mean of all forecast variables, even for ensemble sizes less than 10. For the ensemble standard deviation, sizes of up to 100 were required for the convergence law to apply. In contrast, there was no clear sign of convergence for the 95th percentile even with 1,000 members. Methods such as neighborhood statistics or prediction of area-averaged quantities were found to improve accuracy, but only for variables with random small-scale variability, such as convective precipitation.Fil: Craig, George C.. Ludwig Maximilians Universitat; AlemaniaFil: Puh, Matjaž. Ludwig Maximilians Universitat; AlemaniaFil: Keil, Christian. Ludwig Maximilians Universitat; AlemaniaFil: Tempest, Kirsten. Ludwig Maximilians Universitat; AlemaniaFil: Necker, Tobias. Universidad de Viena; AustriaFil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Weissmann, Martin. Universidad de Viena; AustriaFil: Miyoshi, Takemasa. Riken Center For Computational Science; JapónJohn Wiley & Sons Ltd2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213084Craig, George C.; Puh, Matjaž; Keil, Christian; Tempest, Kirsten; Necker, Tobias; et al.; Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 148; 746; 5-2022; 2325-23430035-9009CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4305info:eu-repo/semantics/altIdentifier/doi/10.1002/qj.4305info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:17Zoai:ri.conicet.gov.ar:11336/213084instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:17.531CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble |
title |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble |
spellingShingle |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble Craig, George C. ENSEMBLE FORECAST UNCERTAINTY PROBABILITY DISTRIBUTION |
title_short |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble |
title_full |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble |
title_fullStr |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble |
title_full_unstemmed |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble |
title_sort |
Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble |
dc.creator.none.fl_str_mv |
Craig, George C. Puh, Matjaž Keil, Christian Tempest, Kirsten Necker, Tobias Ruiz, Juan Jose Weissmann, Martin Miyoshi, Takemasa |
author |
Craig, George C. |
author_facet |
Craig, George C. Puh, Matjaž Keil, Christian Tempest, Kirsten Necker, Tobias Ruiz, Juan Jose Weissmann, Martin Miyoshi, Takemasa |
author_role |
author |
author2 |
Puh, Matjaž Keil, Christian Tempest, Kirsten Necker, Tobias Ruiz, Juan Jose Weissmann, Martin Miyoshi, Takemasa |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
ENSEMBLE FORECAST UNCERTAINTY PROBABILITY DISTRIBUTION |
topic |
ENSEMBLE FORECAST UNCERTAINTY PROBABILITY DISTRIBUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The errors in numerical weather forecasts resulting from limited ensemble size are explored using 1,000-member forecasts of convective weather over Germany at 3-km resolution. A large number of forecast variables at different lead times were examined, and their distributions could be classified into three categories: quasi-normal (e.g., tropospheric temperature), highly skewed (e.g. precipitation), and mixtures (e.g., humidity). Dependence on ensemble size was examined in comparison to the asymptotic convergence law that the sampling error decreases proportional to N−1/2 for large enough ensemble size N, independent of the underlying distribution shape. The asymptotic convergence behavior was observed for the ensemble mean of all forecast variables, even for ensemble sizes less than 10. For the ensemble standard deviation, sizes of up to 100 were required for the convergence law to apply. In contrast, there was no clear sign of convergence for the 95th percentile even with 1,000 members. Methods such as neighborhood statistics or prediction of area-averaged quantities were found to improve accuracy, but only for variables with random small-scale variability, such as convective precipitation. Fil: Craig, George C.. Ludwig Maximilians Universitat; Alemania Fil: Puh, Matjaž. Ludwig Maximilians Universitat; Alemania Fil: Keil, Christian. Ludwig Maximilians Universitat; Alemania Fil: Tempest, Kirsten. Ludwig Maximilians Universitat; Alemania Fil: Necker, Tobias. Universidad de Viena; Austria Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina Fil: Weissmann, Martin. Universidad de Viena; Austria Fil: Miyoshi, Takemasa. Riken Center For Computational Science; Japón |
description |
The errors in numerical weather forecasts resulting from limited ensemble size are explored using 1,000-member forecasts of convective weather over Germany at 3-km resolution. A large number of forecast variables at different lead times were examined, and their distributions could be classified into three categories: quasi-normal (e.g., tropospheric temperature), highly skewed (e.g. precipitation), and mixtures (e.g., humidity). Dependence on ensemble size was examined in comparison to the asymptotic convergence law that the sampling error decreases proportional to N−1/2 for large enough ensemble size N, independent of the underlying distribution shape. The asymptotic convergence behavior was observed for the ensemble mean of all forecast variables, even for ensemble sizes less than 10. For the ensemble standard deviation, sizes of up to 100 were required for the convergence law to apply. In contrast, there was no clear sign of convergence for the 95th percentile even with 1,000 members. Methods such as neighborhood statistics or prediction of area-averaged quantities were found to improve accuracy, but only for variables with random small-scale variability, such as convective precipitation. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213084 Craig, George C.; Puh, Matjaž; Keil, Christian; Tempest, Kirsten; Necker, Tobias; et al.; Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 148; 746; 5-2022; 2325-2343 0035-9009 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213084 |
identifier_str_mv |
Craig, George C.; Puh, Matjaž; Keil, Christian; Tempest, Kirsten; Necker, Tobias; et al.; Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 148; 746; 5-2022; 2325-2343 0035-9009 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4305 info:eu-repo/semantics/altIdentifier/doi/10.1002/qj.4305 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614069011611648 |
score |
13.070432 |