MobiDB: Intrinsically disordered proteins in 2021
- Autores
- Piovesan, Damiano; Necci, Marco; Escobedo, Nahuel Abel; Monzon, Alexander Miguel; Viczián, András; Mičetić, Ivan; Quaglia, Federica; Paladin, Lisanna; Ramasamy, Pathmanaban; Dosztányi, Zsuzsanna; Vranken, Wim F.; Davey, Norman E.; Parisi, Gustavo Daniel; Fuxreiter, Monika; Tosatto, Silvio C. E.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.
Fil: Piovesan, Damiano. Università di Padova; Italia
Fil: Necci, Marco. Università di Padova; Italia
Fil: Escobedo, Nahuel Abel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Monzon, Alexander Miguel. Università di Padova; Italia
Fil: Viczián, András. Università di Padova; Italia
Fil: Mičetić, Ivan. Università di Padova; Italia
Fil: Quaglia, Federica. Università di Padova; Italia
Fil: Paladin, Lisanna. Università di Padova; Italia
Fil: Ramasamy, Pathmanaban. Vrije Unviversiteit Brussel; Bélgica. University of Ghent; Bélgica. Interuniversity Institute of Bioinformatics in Brussels; Bélgica
Fil: Dosztányi, Zsuzsanna. Eötvös Loránd University; Hungría
Fil: Vranken, Wim F.. Vrije Unviversiteit Brussel; Bélgica. Interuniversity Institute of Bioinformatics in Brussels; Bélgica
Fil: Davey, Norman E.. The Institute Of Cancer Research; Reino Unido
Fil: Parisi, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Fuxreiter, Monika. Università di Padova; Italia
Fil: Tosatto, Silvio C. E.. Università di Padova; Italia - Materia
-
DISORDER
Database
Prediction
UNIPROT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172503
Ver los metadatos del registro completo
id |
CONICETDig_962101d2313a3079390566b2e34f9638 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172503 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
MobiDB: Intrinsically disordered proteins in 2021Piovesan, DamianoNecci, MarcoEscobedo, Nahuel AbelMonzon, Alexander MiguelViczián, AndrásMičetić, IvanQuaglia, FedericaPaladin, LisannaRamasamy, PathmanabanDosztányi, ZsuzsannaVranken, Wim F.Davey, Norman E.Parisi, Gustavo DanielFuxreiter, MonikaTosatto, Silvio C. E.DISORDERDatabasePredictionUNIPROThttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.Fil: Piovesan, Damiano. Università di Padova; ItaliaFil: Necci, Marco. Università di Padova; ItaliaFil: Escobedo, Nahuel Abel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Monzon, Alexander Miguel. Università di Padova; ItaliaFil: Viczián, András. Università di Padova; ItaliaFil: Mičetić, Ivan. Università di Padova; ItaliaFil: Quaglia, Federica. Università di Padova; ItaliaFil: Paladin, Lisanna. Università di Padova; ItaliaFil: Ramasamy, Pathmanaban. Vrije Unviversiteit Brussel; Bélgica. University of Ghent; Bélgica. Interuniversity Institute of Bioinformatics in Brussels; BélgicaFil: Dosztányi, Zsuzsanna. Eötvös Loránd University; HungríaFil: Vranken, Wim F.. Vrije Unviversiteit Brussel; Bélgica. Interuniversity Institute of Bioinformatics in Brussels; BélgicaFil: Davey, Norman E.. The Institute Of Cancer Research; Reino UnidoFil: Parisi, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Fuxreiter, Monika. Università di Padova; ItaliaFil: Tosatto, Silvio C. E.. Università di Padova; ItaliaOxford University Press2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172503Piovesan, Damiano; Necci, Marco; Escobedo, Nahuel Abel; Monzon, Alexander Miguel; Viczián, András; et al.; MobiDB: Intrinsically disordered proteins in 2021; Oxford University Press; Nucleic Acids Research; 49; D1; 1-2021; 361-3670305-10481362-4962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1058/6006190info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkaa1058info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:39Zoai:ri.conicet.gov.ar:11336/172503instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:39.293CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
MobiDB: Intrinsically disordered proteins in 2021 |
title |
MobiDB: Intrinsically disordered proteins in 2021 |
spellingShingle |
MobiDB: Intrinsically disordered proteins in 2021 Piovesan, Damiano DISORDER Database Prediction UNIPROT |
title_short |
MobiDB: Intrinsically disordered proteins in 2021 |
title_full |
MobiDB: Intrinsically disordered proteins in 2021 |
title_fullStr |
MobiDB: Intrinsically disordered proteins in 2021 |
title_full_unstemmed |
MobiDB: Intrinsically disordered proteins in 2021 |
title_sort |
MobiDB: Intrinsically disordered proteins in 2021 |
dc.creator.none.fl_str_mv |
Piovesan, Damiano Necci, Marco Escobedo, Nahuel Abel Monzon, Alexander Miguel Viczián, András Mičetić, Ivan Quaglia, Federica Paladin, Lisanna Ramasamy, Pathmanaban Dosztányi, Zsuzsanna Vranken, Wim F. Davey, Norman E. Parisi, Gustavo Daniel Fuxreiter, Monika Tosatto, Silvio C. E. |
author |
Piovesan, Damiano |
author_facet |
Piovesan, Damiano Necci, Marco Escobedo, Nahuel Abel Monzon, Alexander Miguel Viczián, András Mičetić, Ivan Quaglia, Federica Paladin, Lisanna Ramasamy, Pathmanaban Dosztányi, Zsuzsanna Vranken, Wim F. Davey, Norman E. Parisi, Gustavo Daniel Fuxreiter, Monika Tosatto, Silvio C. E. |
author_role |
author |
author2 |
Necci, Marco Escobedo, Nahuel Abel Monzon, Alexander Miguel Viczián, András Mičetić, Ivan Quaglia, Federica Paladin, Lisanna Ramasamy, Pathmanaban Dosztányi, Zsuzsanna Vranken, Wim F. Davey, Norman E. Parisi, Gustavo Daniel Fuxreiter, Monika Tosatto, Silvio C. E. |
author2_role |
author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
DISORDER Database Prediction UNIPROT |
topic |
DISORDER Database Prediction UNIPROT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users. Fil: Piovesan, Damiano. Università di Padova; Italia Fil: Necci, Marco. Università di Padova; Italia Fil: Escobedo, Nahuel Abel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Monzon, Alexander Miguel. Università di Padova; Italia Fil: Viczián, András. Università di Padova; Italia Fil: Mičetić, Ivan. Università di Padova; Italia Fil: Quaglia, Federica. Università di Padova; Italia Fil: Paladin, Lisanna. Università di Padova; Italia Fil: Ramasamy, Pathmanaban. Vrije Unviversiteit Brussel; Bélgica. University of Ghent; Bélgica. Interuniversity Institute of Bioinformatics in Brussels; Bélgica Fil: Dosztányi, Zsuzsanna. Eötvös Loránd University; Hungría Fil: Vranken, Wim F.. Vrije Unviversiteit Brussel; Bélgica. Interuniversity Institute of Bioinformatics in Brussels; Bélgica Fil: Davey, Norman E.. The Institute Of Cancer Research; Reino Unido Fil: Parisi, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Fuxreiter, Monika. Università di Padova; Italia Fil: Tosatto, Silvio C. E.. Università di Padova; Italia |
description |
The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172503 Piovesan, Damiano; Necci, Marco; Escobedo, Nahuel Abel; Monzon, Alexander Miguel; Viczián, András; et al.; MobiDB: Intrinsically disordered proteins in 2021; Oxford University Press; Nucleic Acids Research; 49; D1; 1-2021; 361-367 0305-1048 1362-4962 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172503 |
identifier_str_mv |
Piovesan, Damiano; Necci, Marco; Escobedo, Nahuel Abel; Monzon, Alexander Miguel; Viczián, András; et al.; MobiDB: Intrinsically disordered proteins in 2021; Oxford University Press; Nucleic Acids Research; 49; D1; 1-2021; 361-367 0305-1048 1362-4962 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1058/6006190 info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkaa1058 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268681098231808 |
score |
13.13397 |