A parametric representation of totally mixed Nash equilibria
- Autores
- Jeronimo, Gabriela Tali; Perrucci, Daniel Roberto; Sabia, Juan Vicente Rafael
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player´s strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure.
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
NONCOOPERATIVE GAME THEORY
NASH EQUILIBRIA
POLYNOMIAL EQUATION SOLVING
MULTIHOMOGENEOUS RESULTANTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244847
Ver los metadatos del registro completo
id |
CONICETDig_91e85d6b469727e4df5672fda06f0b44 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244847 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A parametric representation of totally mixed Nash equilibriaJeronimo, Gabriela TaliPerrucci, Daniel RobertoSabia, Juan Vicente RafaelNONCOOPERATIVE GAME THEORYNASH EQUILIBRIAPOLYNOMIAL EQUATION SOLVINGMULTIHOMOGENEOUS RESULTANTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player´s strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure.Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaPergamon-Elsevier Science Ltd2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244847Jeronimo, Gabriela Tali; Perrucci, Daniel Roberto; Sabia, Juan Vicente Rafael; A parametric representation of totally mixed Nash equilibria; Pergamon-Elsevier Science Ltd; Computers & Mathematics With Applications (1987); 58; 6; 9-2009; 1126-11410898-1221CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2009.06.043info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0898122109004568?via%3Dihubinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0703436info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:59Zoai:ri.conicet.gov.ar:11336/244847instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:59.927CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A parametric representation of totally mixed Nash equilibria |
title |
A parametric representation of totally mixed Nash equilibria |
spellingShingle |
A parametric representation of totally mixed Nash equilibria Jeronimo, Gabriela Tali NONCOOPERATIVE GAME THEORY NASH EQUILIBRIA POLYNOMIAL EQUATION SOLVING MULTIHOMOGENEOUS RESULTANTS |
title_short |
A parametric representation of totally mixed Nash equilibria |
title_full |
A parametric representation of totally mixed Nash equilibria |
title_fullStr |
A parametric representation of totally mixed Nash equilibria |
title_full_unstemmed |
A parametric representation of totally mixed Nash equilibria |
title_sort |
A parametric representation of totally mixed Nash equilibria |
dc.creator.none.fl_str_mv |
Jeronimo, Gabriela Tali Perrucci, Daniel Roberto Sabia, Juan Vicente Rafael |
author |
Jeronimo, Gabriela Tali |
author_facet |
Jeronimo, Gabriela Tali Perrucci, Daniel Roberto Sabia, Juan Vicente Rafael |
author_role |
author |
author2 |
Perrucci, Daniel Roberto Sabia, Juan Vicente Rafael |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NONCOOPERATIVE GAME THEORY NASH EQUILIBRIA POLYNOMIAL EQUATION SOLVING MULTIHOMOGENEOUS RESULTANTS |
topic |
NONCOOPERATIVE GAME THEORY NASH EQUILIBRIA POLYNOMIAL EQUATION SOLVING MULTIHOMOGENEOUS RESULTANTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player´s strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player´s strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244847 Jeronimo, Gabriela Tali; Perrucci, Daniel Roberto; Sabia, Juan Vicente Rafael; A parametric representation of totally mixed Nash equilibria; Pergamon-Elsevier Science Ltd; Computers & Mathematics With Applications (1987); 58; 6; 9-2009; 1126-1141 0898-1221 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244847 |
identifier_str_mv |
Jeronimo, Gabriela Tali; Perrucci, Daniel Roberto; Sabia, Juan Vicente Rafael; A parametric representation of totally mixed Nash equilibria; Pergamon-Elsevier Science Ltd; Computers & Mathematics With Applications (1987); 58; 6; 9-2009; 1126-1141 0898-1221 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2009.06.043 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0898122109004568?via%3Dihub info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0703436 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613753746751488 |
score |
13.070432 |