Distribution of zeros in the rough geometry of fluctuating interfaces
- Autores
- Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.
Fil: Zamorategui, Arturo L.. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; Francia
Fil: Lecomte, Vivien. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; Francia
Fil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina - Materia
-
Interfaces
Thermal Fluctuations
Zeros
Roughness - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61812
Ver los metadatos del registro completo
id |
CONICETDig_9501e72212a7f3a8a64ad7461c19ba9e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61812 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Distribution of zeros in the rough geometry of fluctuating interfacesZamorategui, Arturo L.Lecomte, VivienKolton, Alejandro BenedyktInterfacesThermal FluctuationsZerosRoughnesshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.Fil: Zamorategui, Arturo L.. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; FranciaFil: Lecomte, Vivien. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; FranciaFil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaAmerican Physical Society2016-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61812Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Distribution of zeros in the rough geometry of fluctuating interfaces; American Physical Society; Physical Review E; 93; 4; 15-4-2016; 42118/1-42118/112470-00531063-651XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.042118info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.042118info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:12Zoai:ri.conicet.gov.ar:11336/61812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:12.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Distribution of zeros in the rough geometry of fluctuating interfaces |
title |
Distribution of zeros in the rough geometry of fluctuating interfaces |
spellingShingle |
Distribution of zeros in the rough geometry of fluctuating interfaces Zamorategui, Arturo L. Interfaces Thermal Fluctuations Zeros Roughness |
title_short |
Distribution of zeros in the rough geometry of fluctuating interfaces |
title_full |
Distribution of zeros in the rough geometry of fluctuating interfaces |
title_fullStr |
Distribution of zeros in the rough geometry of fluctuating interfaces |
title_full_unstemmed |
Distribution of zeros in the rough geometry of fluctuating interfaces |
title_sort |
Distribution of zeros in the rough geometry of fluctuating interfaces |
dc.creator.none.fl_str_mv |
Zamorategui, Arturo L. Lecomte, Vivien Kolton, Alejandro Benedykt |
author |
Zamorategui, Arturo L. |
author_facet |
Zamorategui, Arturo L. Lecomte, Vivien Kolton, Alejandro Benedykt |
author_role |
author |
author2 |
Lecomte, Vivien Kolton, Alejandro Benedykt |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Interfaces Thermal Fluctuations Zeros Roughness |
topic |
Interfaces Thermal Fluctuations Zeros Roughness |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points. Fil: Zamorategui, Arturo L.. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; Francia Fil: Lecomte, Vivien. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; Francia Fil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina |
description |
We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61812 Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Distribution of zeros in the rough geometry of fluctuating interfaces; American Physical Society; Physical Review E; 93; 4; 15-4-2016; 42118/1-42118/11 2470-0053 1063-651X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61812 |
identifier_str_mv |
Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Distribution of zeros in the rough geometry of fluctuating interfaces; American Physical Society; Physical Review E; 93; 4; 15-4-2016; 42118/1-42118/11 2470-0053 1063-651X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.042118 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.042118 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613758262968320 |
score |
13.070432 |