Distribution of zeros in the rough geometry of fluctuating interfaces

Autores
Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.
Fil: Zamorategui, Arturo L.. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; Francia
Fil: Lecomte, Vivien. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; Francia
Fil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Materia
Interfaces
Thermal Fluctuations
Zeros
Roughness
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61812

id CONICETDig_9501e72212a7f3a8a64ad7461c19ba9e
oai_identifier_str oai:ri.conicet.gov.ar:11336/61812
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Distribution of zeros in the rough geometry of fluctuating interfacesZamorategui, Arturo L.Lecomte, VivienKolton, Alejandro BenedyktInterfacesThermal FluctuationsZerosRoughnesshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.Fil: Zamorategui, Arturo L.. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; FranciaFil: Lecomte, Vivien. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; FranciaFil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaAmerican Physical Society2016-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61812Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Distribution of zeros in the rough geometry of fluctuating interfaces; American Physical Society; Physical Review E; 93; 4; 15-4-2016; 42118/1-42118/112470-00531063-651XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.042118info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.042118info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:12Zoai:ri.conicet.gov.ar:11336/61812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:12.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Distribution of zeros in the rough geometry of fluctuating interfaces
title Distribution of zeros in the rough geometry of fluctuating interfaces
spellingShingle Distribution of zeros in the rough geometry of fluctuating interfaces
Zamorategui, Arturo L.
Interfaces
Thermal Fluctuations
Zeros
Roughness
title_short Distribution of zeros in the rough geometry of fluctuating interfaces
title_full Distribution of zeros in the rough geometry of fluctuating interfaces
title_fullStr Distribution of zeros in the rough geometry of fluctuating interfaces
title_full_unstemmed Distribution of zeros in the rough geometry of fluctuating interfaces
title_sort Distribution of zeros in the rough geometry of fluctuating interfaces
dc.creator.none.fl_str_mv Zamorategui, Arturo L.
Lecomte, Vivien
Kolton, Alejandro Benedykt
author Zamorategui, Arturo L.
author_facet Zamorategui, Arturo L.
Lecomte, Vivien
Kolton, Alejandro Benedykt
author_role author
author2 Lecomte, Vivien
Kolton, Alejandro Benedykt
author2_role author
author
dc.subject.none.fl_str_mv Interfaces
Thermal Fluctuations
Zeros
Roughness
topic Interfaces
Thermal Fluctuations
Zeros
Roughness
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.
Fil: Zamorategui, Arturo L.. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; Francia
Fil: Lecomte, Vivien. Université Paris Diderot - Paris 7; Francia. Universite Pierre et Marie Curie; Francia
Fil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
description We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61812
Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Distribution of zeros in the rough geometry of fluctuating interfaces; American Physical Society; Physical Review E; 93; 4; 15-4-2016; 42118/1-42118/11
2470-0053
1063-651X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61812
identifier_str_mv Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Distribution of zeros in the rough geometry of fluctuating interfaces; American Physical Society; Physical Review E; 93; 4; 15-4-2016; 42118/1-42118/11
2470-0053
1063-651X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.042118
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.042118
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613758262968320
score 13.070432