Statistics of zero crossings in rough interfaces with fractional elasticity

Autores
Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930)PHRVAO0031-899X10.1103/PhysRev.36.823]) to ζ=3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1/21. The effect on P of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.
Fil: Zamorategui, Arturo L.. Université Pierre et Marie Curie; Francia. Université Paris Diderot - Paris 7; Francia
Fil: Lecomte, Vivien. Université Grenoble Alpes; Francia
Fil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
FRACTIONAL ELASTICITY
STOCHASTIC PROCESSES
ZEROS OF RANDOM FUNCTIONS
SELF AFFINITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98283

id CONICETDig_94982b764a290b88e8970ad092419645
oai_identifier_str oai:ri.conicet.gov.ar:11336/98283
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Statistics of zero crossings in rough interfaces with fractional elasticityZamorategui, Arturo L.Lecomte, VivienKolton, Alejandro BenedyktFRACTIONAL ELASTICITYSTOCHASTIC PROCESSESZEROS OF RANDOM FUNCTIONSSELF AFFINITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930)PHRVAO0031-899X10.1103/PhysRev.36.823]) to ζ=3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1/21. The effect on P of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.Fil: Zamorategui, Arturo L.. Université Pierre et Marie Curie; Francia. Université Paris Diderot - Paris 7; FranciaFil: Lecomte, Vivien. Université Grenoble Alpes; FranciaFil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Physical Society2018-04-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98283Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Statistics of zero crossings in rough interfaces with fractional elasticity; American Physical Society; Physical Review E; 97; 4; 24-4-2018; 042129-1/172470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042129info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042129info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.07671info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:35Zoai:ri.conicet.gov.ar:11336/98283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:35.998CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Statistics of zero crossings in rough interfaces with fractional elasticity
title Statistics of zero crossings in rough interfaces with fractional elasticity
spellingShingle Statistics of zero crossings in rough interfaces with fractional elasticity
Zamorategui, Arturo L.
FRACTIONAL ELASTICITY
STOCHASTIC PROCESSES
ZEROS OF RANDOM FUNCTIONS
SELF AFFINITY
title_short Statistics of zero crossings in rough interfaces with fractional elasticity
title_full Statistics of zero crossings in rough interfaces with fractional elasticity
title_fullStr Statistics of zero crossings in rough interfaces with fractional elasticity
title_full_unstemmed Statistics of zero crossings in rough interfaces with fractional elasticity
title_sort Statistics of zero crossings in rough interfaces with fractional elasticity
dc.creator.none.fl_str_mv Zamorategui, Arturo L.
Lecomte, Vivien
Kolton, Alejandro Benedykt
author Zamorategui, Arturo L.
author_facet Zamorategui, Arturo L.
Lecomte, Vivien
Kolton, Alejandro Benedykt
author_role author
author2 Lecomte, Vivien
Kolton, Alejandro Benedykt
author2_role author
author
dc.subject.none.fl_str_mv FRACTIONAL ELASTICITY
STOCHASTIC PROCESSES
ZEROS OF RANDOM FUNCTIONS
SELF AFFINITY
topic FRACTIONAL ELASTICITY
STOCHASTIC PROCESSES
ZEROS OF RANDOM FUNCTIONS
SELF AFFINITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930)PHRVAO0031-899X10.1103/PhysRev.36.823]) to ζ=3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1/21. The effect on P of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.
Fil: Zamorategui, Arturo L.. Université Pierre et Marie Curie; Francia. Université Paris Diderot - Paris 7; Francia
Fil: Lecomte, Vivien. Université Grenoble Alpes; Francia
Fil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930)PHRVAO0031-899X10.1103/PhysRev.36.823]) to ζ=3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1/21. The effect on P of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.
publishDate 2018
dc.date.none.fl_str_mv 2018-04-24
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98283
Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Statistics of zero crossings in rough interfaces with fractional elasticity; American Physical Society; Physical Review E; 97; 4; 24-4-2018; 042129-1/17
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98283
identifier_str_mv Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Statistics of zero crossings in rough interfaces with fractional elasticity; American Physical Society; Physical Review E; 97; 4; 24-4-2018; 042129-1/17
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042129
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042129
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.07671
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613220172562432
score 13.070432