Statistics of zero crossings in rough interfaces with fractional elasticity
- Autores
- Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930)PHRVAO0031-899X10.1103/PhysRev.36.823]) to ζ=3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1/21. The effect on P of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.
Fil: Zamorategui, Arturo L.. Université Pierre et Marie Curie; Francia. Université Paris Diderot - Paris 7; Francia
Fil: Lecomte, Vivien. Université Grenoble Alpes; Francia
Fil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina - Materia
-
FRACTIONAL ELASTICITY
STOCHASTIC PROCESSES
ZEROS OF RANDOM FUNCTIONS
SELF AFFINITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98283
Ver los metadatos del registro completo
id |
CONICETDig_94982b764a290b88e8970ad092419645 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98283 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Statistics of zero crossings in rough interfaces with fractional elasticityZamorategui, Arturo L.Lecomte, VivienKolton, Alejandro BenedyktFRACTIONAL ELASTICITYSTOCHASTIC PROCESSESZEROS OF RANDOM FUNCTIONSSELF AFFINITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930)PHRVAO0031-899X10.1103/PhysRev.36.823]) to ζ=3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1/21. The effect on P of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.Fil: Zamorategui, Arturo L.. Université Pierre et Marie Curie; Francia. Université Paris Diderot - Paris 7; FranciaFil: Lecomte, Vivien. Université Grenoble Alpes; FranciaFil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Physical Society2018-04-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98283Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Statistics of zero crossings in rough interfaces with fractional elasticity; American Physical Society; Physical Review E; 97; 4; 24-4-2018; 042129-1/172470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042129info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042129info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.07671info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:35Zoai:ri.conicet.gov.ar:11336/98283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:35.998CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Statistics of zero crossings in rough interfaces with fractional elasticity |
title |
Statistics of zero crossings in rough interfaces with fractional elasticity |
spellingShingle |
Statistics of zero crossings in rough interfaces with fractional elasticity Zamorategui, Arturo L. FRACTIONAL ELASTICITY STOCHASTIC PROCESSES ZEROS OF RANDOM FUNCTIONS SELF AFFINITY |
title_short |
Statistics of zero crossings in rough interfaces with fractional elasticity |
title_full |
Statistics of zero crossings in rough interfaces with fractional elasticity |
title_fullStr |
Statistics of zero crossings in rough interfaces with fractional elasticity |
title_full_unstemmed |
Statistics of zero crossings in rough interfaces with fractional elasticity |
title_sort |
Statistics of zero crossings in rough interfaces with fractional elasticity |
dc.creator.none.fl_str_mv |
Zamorategui, Arturo L. Lecomte, Vivien Kolton, Alejandro Benedykt |
author |
Zamorategui, Arturo L. |
author_facet |
Zamorategui, Arturo L. Lecomte, Vivien Kolton, Alejandro Benedykt |
author_role |
author |
author2 |
Lecomte, Vivien Kolton, Alejandro Benedykt |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FRACTIONAL ELASTICITY STOCHASTIC PROCESSES ZEROS OF RANDOM FUNCTIONS SELF AFFINITY |
topic |
FRACTIONAL ELASTICITY STOCHASTIC PROCESSES ZEROS OF RANDOM FUNCTIONS SELF AFFINITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930)PHRVAO0031-899X10.1103/PhysRev.36.823]) to ζ=3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1/21. The effect on P of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis. Fil: Zamorategui, Arturo L.. Université Pierre et Marie Curie; Francia. Université Paris Diderot - Paris 7; Francia Fil: Lecomte, Vivien. Université Grenoble Alpes; Francia Fil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina |
description |
We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930)PHRVAO0031-899X10.1103/PhysRev.36.823]) to ζ=3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1/21. The effect on P of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98283 Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Statistics of zero crossings in rough interfaces with fractional elasticity; American Physical Society; Physical Review E; 97; 4; 24-4-2018; 042129-1/17 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98283 |
identifier_str_mv |
Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Statistics of zero crossings in rough interfaces with fractional elasticity; American Physical Society; Physical Review E; 97; 4; 24-4-2018; 042129-1/17 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042129 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042129 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.07671 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613220172562432 |
score |
13.070432 |