Fractional convexity

Autores
del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation.
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Quaas, Alexander. Universidad Técnica Federico Santa María; Chile
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Fractional convexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167109

id CONICETDig_46c8b14762388bb6e22cfdded4b1abd1
oai_identifier_str oai:ri.conicet.gov.ar:11336/167109
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fractional convexitydel Pezzo, Leandro MartinQuaas, AlexanderRossi, Julio DanielFractional convexityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation.Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Quaas, Alexander. Universidad Técnica Federico Santa María; ChileFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2021-08-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167109del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel; Fractional convexity; Springer; Mathematische Annalen; 383; 3-4; 17-8-2021; 1687-17190025-58311432-1807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-021-02254-yinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2009.04141info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-021-02254-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:11Zoai:ri.conicet.gov.ar:11336/167109instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:11.56CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fractional convexity
title Fractional convexity
spellingShingle Fractional convexity
del Pezzo, Leandro Martin
Fractional convexity
title_short Fractional convexity
title_full Fractional convexity
title_fullStr Fractional convexity
title_full_unstemmed Fractional convexity
title_sort Fractional convexity
dc.creator.none.fl_str_mv del Pezzo, Leandro Martin
Quaas, Alexander
Rossi, Julio Daniel
author del Pezzo, Leandro Martin
author_facet del Pezzo, Leandro Martin
Quaas, Alexander
Rossi, Julio Daniel
author_role author
author2 Quaas, Alexander
Rossi, Julio Daniel
author2_role author
author
dc.subject.none.fl_str_mv Fractional convexity
topic Fractional convexity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation.
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Quaas, Alexander. Universidad Técnica Federico Santa María; Chile
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167109
del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel; Fractional convexity; Springer; Mathematische Annalen; 383; 3-4; 17-8-2021; 1687-1719
0025-5831
1432-1807
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167109
identifier_str_mv del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel; Fractional convexity; Springer; Mathematische Annalen; 383; 3-4; 17-8-2021; 1687-1719
0025-5831
1432-1807
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-021-02254-y
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2009.04141
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-021-02254-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269079439671296
score 13.13397