Fractional convexity
- Autores
- del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation.
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Quaas, Alexander. Universidad Técnica Federico Santa María; Chile
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
- Fractional convexity
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167109
Ver los metadatos del registro completo
id |
CONICETDig_46c8b14762388bb6e22cfdded4b1abd1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167109 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fractional convexitydel Pezzo, Leandro MartinQuaas, AlexanderRossi, Julio DanielFractional convexityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation.Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Quaas, Alexander. Universidad Técnica Federico Santa María; ChileFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2021-08-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167109del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel; Fractional convexity; Springer; Mathematische Annalen; 383; 3-4; 17-8-2021; 1687-17190025-58311432-1807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-021-02254-yinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2009.04141info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-021-02254-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:11Zoai:ri.conicet.gov.ar:11336/167109instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:11.56CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fractional convexity |
title |
Fractional convexity |
spellingShingle |
Fractional convexity del Pezzo, Leandro Martin Fractional convexity |
title_short |
Fractional convexity |
title_full |
Fractional convexity |
title_fullStr |
Fractional convexity |
title_full_unstemmed |
Fractional convexity |
title_sort |
Fractional convexity |
dc.creator.none.fl_str_mv |
del Pezzo, Leandro Martin Quaas, Alexander Rossi, Julio Daniel |
author |
del Pezzo, Leandro Martin |
author_facet |
del Pezzo, Leandro Martin Quaas, Alexander Rossi, Julio Daniel |
author_role |
author |
author2 |
Quaas, Alexander Rossi, Julio Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Fractional convexity |
topic |
Fractional convexity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation. Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Quaas, Alexander. Universidad Técnica Federico Santa María; Chile Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-17 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167109 del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel; Fractional convexity; Springer; Mathematische Annalen; 383; 3-4; 17-8-2021; 1687-1719 0025-5831 1432-1807 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/167109 |
identifier_str_mv |
del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel; Fractional convexity; Springer; Mathematische Annalen; 383; 3-4; 17-8-2021; 1687-1719 0025-5831 1432-1807 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-021-02254-y info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2009.04141 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-021-02254-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269079439671296 |
score |
13.13397 |