Clique-perfectness and balancedness of some graph classes

Autores
Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret K.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wagler, Annegret K.. Universite Blaise Pascal; Francia
Materia
Balanced Graphs
Clique-Perfect Graphs
Diamond-Free Graphs
P4-Tidy Graphs
Paw-Free Graphs
Recognition Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18879

id CONICETDig_949470fef632d2175d8f8265094bc817
oai_identifier_str oai:ri.conicet.gov.ar:11336/18879
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Clique-perfectness and balancedness of some graph classesBonomo, FlaviaDuran, Guillermo AlfredoSafe, Martin DarioWagler, Annegret K.Balanced GraphsClique-Perfect GraphsDiamond-Free GraphsP4-Tidy GraphsPaw-Free GraphsRecognition Algorithmshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wagler, Annegret K.. Universite Blaise Pascal; FranciaTaylor & Francis2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18879Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret K.; Clique-perfectness and balancedness of some graph classes; Taylor & Francis; International Journal Of Computer Mathematics; 91; 10; 3-2014; 2118-21410020-7160CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00207160.2014.881994info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00207160.2014.881994info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:51Zoai:ri.conicet.gov.ar:11336/18879instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:51.33CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Clique-perfectness and balancedness of some graph classes
title Clique-perfectness and balancedness of some graph classes
spellingShingle Clique-perfectness and balancedness of some graph classes
Bonomo, Flavia
Balanced Graphs
Clique-Perfect Graphs
Diamond-Free Graphs
P4-Tidy Graphs
Paw-Free Graphs
Recognition Algorithms
title_short Clique-perfectness and balancedness of some graph classes
title_full Clique-perfectness and balancedness of some graph classes
title_fullStr Clique-perfectness and balancedness of some graph classes
title_full_unstemmed Clique-perfectness and balancedness of some graph classes
title_sort Clique-perfectness and balancedness of some graph classes
dc.creator.none.fl_str_mv Bonomo, Flavia
Duran, Guillermo Alfredo
Safe, Martin Dario
Wagler, Annegret K.
author Bonomo, Flavia
author_facet Bonomo, Flavia
Duran, Guillermo Alfredo
Safe, Martin Dario
Wagler, Annegret K.
author_role author
author2 Duran, Guillermo Alfredo
Safe, Martin Dario
Wagler, Annegret K.
author2_role author
author
author
dc.subject.none.fl_str_mv Balanced Graphs
Clique-Perfect Graphs
Diamond-Free Graphs
P4-Tidy Graphs
Paw-Free Graphs
Recognition Algorithms
topic Balanced Graphs
Clique-Perfect Graphs
Diamond-Free Graphs
P4-Tidy Graphs
Paw-Free Graphs
Recognition Algorithms
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wagler, Annegret K.. Universite Blaise Pascal; Francia
description A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18879
Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret K.; Clique-perfectness and balancedness of some graph classes; Taylor & Francis; International Journal Of Computer Mathematics; 91; 10; 3-2014; 2118-2141
0020-7160
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18879
identifier_str_mv Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret K.; Clique-perfectness and balancedness of some graph classes; Taylor & Francis; International Journal Of Computer Mathematics; 91; 10; 3-2014; 2118-2141
0020-7160
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/00207160.2014.881994
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00207160.2014.881994
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268998755942400
score 13.13397