Clique-perfectness and balancedness of some graph classes
- Autores
- Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret K.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wagler, Annegret K.. Universite Blaise Pascal; Francia - Materia
-
Balanced Graphs
Clique-Perfect Graphs
Diamond-Free Graphs
P4-Tidy Graphs
Paw-Free Graphs
Recognition Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18879
Ver los metadatos del registro completo
id |
CONICETDig_949470fef632d2175d8f8265094bc817 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18879 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Clique-perfectness and balancedness of some graph classesBonomo, FlaviaDuran, Guillermo AlfredoSafe, Martin DarioWagler, Annegret K.Balanced GraphsClique-Perfect GraphsDiamond-Free GraphsP4-Tidy GraphsPaw-Free GraphsRecognition Algorithmshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wagler, Annegret K.. Universite Blaise Pascal; FranciaTaylor & Francis2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18879Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret K.; Clique-perfectness and balancedness of some graph classes; Taylor & Francis; International Journal Of Computer Mathematics; 91; 10; 3-2014; 2118-21410020-7160CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00207160.2014.881994info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00207160.2014.881994info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:51Zoai:ri.conicet.gov.ar:11336/18879instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:51.33CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Clique-perfectness and balancedness of some graph classes |
title |
Clique-perfectness and balancedness of some graph classes |
spellingShingle |
Clique-perfectness and balancedness of some graph classes Bonomo, Flavia Balanced Graphs Clique-Perfect Graphs Diamond-Free Graphs P4-Tidy Graphs Paw-Free Graphs Recognition Algorithms |
title_short |
Clique-perfectness and balancedness of some graph classes |
title_full |
Clique-perfectness and balancedness of some graph classes |
title_fullStr |
Clique-perfectness and balancedness of some graph classes |
title_full_unstemmed |
Clique-perfectness and balancedness of some graph classes |
title_sort |
Clique-perfectness and balancedness of some graph classes |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Duran, Guillermo Alfredo Safe, Martin Dario Wagler, Annegret K. |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Duran, Guillermo Alfredo Safe, Martin Dario Wagler, Annegret K. |
author_role |
author |
author2 |
Duran, Guillermo Alfredo Safe, Martin Dario Wagler, Annegret K. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Balanced Graphs Clique-Perfect Graphs Diamond-Free Graphs P4-Tidy Graphs Paw-Free Graphs Recognition Algorithms |
topic |
Balanced Graphs Clique-Perfect Graphs Diamond-Free Graphs P4-Tidy Graphs Paw-Free Graphs Recognition Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced. Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Wagler, Annegret K.. Universite Blaise Pascal; Francia |
description |
A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18879 Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret K.; Clique-perfectness and balancedness of some graph classes; Taylor & Francis; International Journal Of Computer Mathematics; 91; 10; 3-2014; 2118-2141 0020-7160 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18879 |
identifier_str_mv |
Bonomo, Flavia; Duran, Guillermo Alfredo; Safe, Martin Dario; Wagler, Annegret K.; Clique-perfectness and balancedness of some graph classes; Taylor & Francis; International Journal Of Computer Mathematics; 91; 10; 3-2014; 2118-2141 0020-7160 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/00207160.2014.881994 info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00207160.2014.881994 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268998755942400 |
score |
13.13397 |