Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs

Autores
Bonomo, F.; Chudnovsky, M.; Durán, G.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Appl Math 2008;156(7):1058-1082
Materia
Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0166218X_v156_n7_p1058_Bonomo

id BDUBAFCEN_9299d978bbd7b65806fe048b7494e032
oai_identifier_str paperaa:paper_0166218X_v156_n7_p1058_Bonomo
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphsBonomo, F.Chudnovsky, M.Durán, G.Claw-free graphsClique-perfect graphsHereditary clique-Helly graphsLine graphsPerfect graphsImage processingMathematical modelsNumber theoryProblem solvingSet theoryClaw free graphsClique perfect graphsHereditary clique-Helly graphsLine graphsPerfect graphsGraph theoryA clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_BonomoDiscrete Appl Math 2008;156(7):1058-1082reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:27Zpaperaa:paper_0166218X_v156_n7_p1058_BonomoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:30.809Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
spellingShingle Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
Bonomo, F.
Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
title_short Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_full Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_fullStr Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_full_unstemmed Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_sort Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
dc.creator.none.fl_str_mv Bonomo, F.
Chudnovsky, M.
Durán, G.
author Bonomo, F.
author_facet Bonomo, F.
Chudnovsky, M.
Durán, G.
author_role author
author2 Chudnovsky, M.
Durán, G.
author2_role author
author
dc.subject.none.fl_str_mv Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
topic Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
dc.description.none.fl_txt_mv A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo
url http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Appl Math 2008;156(7):1058-1082
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340703251726336
score 12.623145