Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
- Autores
- Bonomo, F.; Chudnovsky, M.; Durán, G.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Appl Math 2008;156(7):1058-1082
- Materia
-
Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0166218X_v156_n7_p1058_Bonomo
Ver los metadatos del registro completo
id |
BDUBAFCEN_9299d978bbd7b65806fe048b7494e032 |
---|---|
oai_identifier_str |
paperaa:paper_0166218X_v156_n7_p1058_Bonomo |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphsBonomo, F.Chudnovsky, M.Durán, G.Claw-free graphsClique-perfect graphsHereditary clique-Helly graphsLine graphsPerfect graphsImage processingMathematical modelsNumber theoryProblem solvingSet theoryClaw free graphsClique perfect graphsHereditary clique-Helly graphsLine graphsPerfect graphsGraph theoryA clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_BonomoDiscrete Appl Math 2008;156(7):1058-1082reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:27Zpaperaa:paper_0166218X_v156_n7_p1058_BonomoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:30.809Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs |
title |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs |
spellingShingle |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs Bonomo, F. Claw-free graphs Clique-perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Image processing Mathematical models Number theory Problem solving Set theory Claw free graphs Clique perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Graph theory |
title_short |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs |
title_full |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs |
title_fullStr |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs |
title_full_unstemmed |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs |
title_sort |
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs |
dc.creator.none.fl_str_mv |
Bonomo, F. Chudnovsky, M. Durán, G. |
author |
Bonomo, F. |
author_facet |
Bonomo, F. Chudnovsky, M. Durán, G. |
author_role |
author |
author2 |
Chudnovsky, M. Durán, G. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Claw-free graphs Clique-perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Image processing Mathematical models Number theory Problem solving Set theory Claw free graphs Clique perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Graph theory |
topic |
Claw-free graphs Clique-perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Image processing Mathematical models Number theory Problem solving Set theory Claw free graphs Clique perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Graph theory |
dc.description.none.fl_txt_mv |
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo |
url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Discrete Appl Math 2008;156(7):1058-1082 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340703251726336 |
score |
12.623145 |