Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs

Autores
Bonomo, F.; Durán, G.; Soulignac, F.; Sueiro, G.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Soulignac, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Appl Math 2009;157(17):3511-3518
Materia
Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W4, bull}-free graphs
Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W<sub>4</sub>, bull}-free graphs
Gems
Graph theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0166218X_v157_n17_p3511_Bonomo

id BDUBAFCEN_3b7f11cd5a0ead3bae965871bf3cd04c
oai_identifier_str paperaa:paper_0166218X_v157_n17_p3511_Bonomo
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphsBonomo, F.Durán, G.Soulignac, F.Sueiro, G.Clique-perfect graphsCoordinated graphsPaw-free graphsPerfect graphsTriangle-free graphs{gem, W4, bull}-free graphsClique-perfect graphsCoordinated graphsPaw-free graphsPerfect graphsTriangle-free graphs{gem, W<sub>4</sub>, bull}-free graphsGemsGraph theoryA graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Soulignac, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v157_n17_p3511_BonomoDiscrete Appl Math 2009;157(17):3511-3518reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:44Zpaperaa:paper_0166218X_v157_n17_p3511_BonomoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:45.834Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
title Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
spellingShingle Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
Bonomo, F.
Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W4, bull}-free graphs
Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W<sub>4</sub>, bull}-free graphs
Gems
Graph theory
title_short Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
title_full Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
title_fullStr Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
title_full_unstemmed Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
title_sort Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
dc.creator.none.fl_str_mv Bonomo, F.
Durán, G.
Soulignac, F.
Sueiro, G.
author Bonomo, F.
author_facet Bonomo, F.
Durán, G.
Soulignac, F.
Sueiro, G.
author_role author
author2 Durán, G.
Soulignac, F.
Sueiro, G.
author2_role author
author
author
dc.subject.none.fl_str_mv Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W4, bull}-free graphs
Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W<sub>4</sub>, bull}-free graphs
Gems
Graph theory
topic Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W4, bull}-free graphs
Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W<sub>4</sub>, bull}-free graphs
Gems
Graph theory
dc.description.none.fl_txt_mv A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Soulignac, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0166218X_v157_n17_p3511_Bonomo
url http://hdl.handle.net/20.500.12110/paper_0166218X_v157_n17_p3511_Bonomo
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Appl Math 2009;157(17):3511-3518
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340707139846144
score 12.623145