Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
- Autores
- Bonomo, F.; Durán, G.; Soulignac, F.; Sueiro, G.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Soulignac, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Appl Math 2009;157(17):3511-3518
- Materia
-
Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W4, bull}-free graphs
Clique-perfect graphs
Coordinated graphs
Paw-free graphs
Perfect graphs
Triangle-free graphs
{gem, W<sub>4</sub>, bull}-free graphs
Gems
Graph theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0166218X_v157_n17_p3511_Bonomo
Ver los metadatos del registro completo
id |
BDUBAFCEN_3b7f11cd5a0ead3bae965871bf3cd04c |
---|---|
oai_identifier_str |
paperaa:paper_0166218X_v157_n17_p3511_Bonomo |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphsBonomo, F.Durán, G.Soulignac, F.Sueiro, G.Clique-perfect graphsCoordinated graphsPaw-free graphsPerfect graphsTriangle-free graphs{gem, W4, bull}-free graphsClique-perfect graphsCoordinated graphsPaw-free graphsPerfect graphsTriangle-free graphs{gem, W<sub>4</sub>, bull}-free graphsGemsGraph theoryA graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Soulignac, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v157_n17_p3511_BonomoDiscrete Appl Math 2009;157(17):3511-3518reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:44Zpaperaa:paper_0166218X_v157_n17_p3511_BonomoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:45.834Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs |
title |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs |
spellingShingle |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs Bonomo, F. Clique-perfect graphs Coordinated graphs Paw-free graphs Perfect graphs Triangle-free graphs {gem, W4, bull}-free graphs Clique-perfect graphs Coordinated graphs Paw-free graphs Perfect graphs Triangle-free graphs {gem, W<sub>4</sub>, bull}-free graphs Gems Graph theory |
title_short |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs |
title_full |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs |
title_fullStr |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs |
title_full_unstemmed |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs |
title_sort |
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs |
dc.creator.none.fl_str_mv |
Bonomo, F. Durán, G. Soulignac, F. Sueiro, G. |
author |
Bonomo, F. |
author_facet |
Bonomo, F. Durán, G. Soulignac, F. Sueiro, G. |
author_role |
author |
author2 |
Durán, G. Soulignac, F. Sueiro, G. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Clique-perfect graphs Coordinated graphs Paw-free graphs Perfect graphs Triangle-free graphs {gem, W4, bull}-free graphs Clique-perfect graphs Coordinated graphs Paw-free graphs Perfect graphs Triangle-free graphs {gem, W<sub>4</sub>, bull}-free graphs Gems Graph theory |
topic |
Clique-perfect graphs Coordinated graphs Paw-free graphs Perfect graphs Triangle-free graphs {gem, W4, bull}-free graphs Clique-perfect graphs Coordinated graphs Paw-free graphs Perfect graphs Triangle-free graphs {gem, W<sub>4</sub>, bull}-free graphs Gems Graph theory |
dc.description.none.fl_txt_mv |
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Soulignac, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0166218X_v157_n17_p3511_Bonomo |
url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v157_n17_p3511_Bonomo |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Discrete Appl Math 2009;157(17):3511-3518 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340707139846144 |
score |
12.623145 |