An alternative definition for the k-Riemann liouville fractional derivative

Autores
Dorrego, Gustavo Abel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discussed, their Laplace transform, the derivative of the potential function and the derivative of the Mittag-Le er k-function introduced in is calculated.
Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina.
Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina.
Fuente
Applied Mathematical Sciences, 2015, vol. 9, no 10, p. 481-491
Materia
K-fractional calculus
K-riemann-liouville fractional integral
Matemáticas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/9103

id RIUNNE_de2a12e174d98de2ccfc46388c8678c1
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/9103
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling An alternative definition for the k-Riemann liouville fractional derivativeDorrego, Gustavo AbelK-fractional calculusK-riemann-liouville fractional integralMatemáticasThe aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discussed, their Laplace transform, the derivative of the potential function and the derivative of the Mittag-Le er k-function introduced in is calculated.Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina.Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina.Hikari Ltd2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 481-491application/pdf1314-7552http://repositorio.unne.edu.ar/handle/123456789/9103Applied Mathematical Sciences, 2015, vol. 9, no 10, p. 481-491reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenghttp://dx.doi.org/10.12988/ams.2015.411893Dorrego, Gustavo Abel, 2015. An Alternative Definition for the k-Riemann-Liouville Fractional Derivative. Applied Mathematical Sciences. Bulgaria: Hikari Ltd, vol. 9. no. 10, p. 481 - 491. ISSN 1314-7552.info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-11-06T10:09:57Zoai:repositorio.unne.edu.ar:123456789/9103instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-11-06 10:09:57.61Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv An alternative definition for the k-Riemann liouville fractional derivative
title An alternative definition for the k-Riemann liouville fractional derivative
spellingShingle An alternative definition for the k-Riemann liouville fractional derivative
Dorrego, Gustavo Abel
K-fractional calculus
K-riemann-liouville fractional integral
Matemáticas
title_short An alternative definition for the k-Riemann liouville fractional derivative
title_full An alternative definition for the k-Riemann liouville fractional derivative
title_fullStr An alternative definition for the k-Riemann liouville fractional derivative
title_full_unstemmed An alternative definition for the k-Riemann liouville fractional derivative
title_sort An alternative definition for the k-Riemann liouville fractional derivative
dc.creator.none.fl_str_mv Dorrego, Gustavo Abel
author Dorrego, Gustavo Abel
author_facet Dorrego, Gustavo Abel
author_role author
dc.subject.none.fl_str_mv K-fractional calculus
K-riemann-liouville fractional integral
Matemáticas
topic K-fractional calculus
K-riemann-liouville fractional integral
Matemáticas
dc.description.none.fl_txt_mv The aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discussed, their Laplace transform, the derivative of the potential function and the derivative of the Mittag-Le er k-function introduced in is calculated.
Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina.
Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina.
description The aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discussed, their Laplace transform, the derivative of the potential function and the derivative of the Mittag-Le er k-function introduced in is calculated.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv 1314-7552
http://repositorio.unne.edu.ar/handle/123456789/9103
identifier_str_mv 1314-7552
url http://repositorio.unne.edu.ar/handle/123456789/9103
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.12988/ams.2015.411893
Dorrego, Gustavo Abel, 2015. An Alternative Definition for the k-Riemann-Liouville Fractional Derivative. Applied Mathematical Sciences. Bulgaria: Hikari Ltd, vol. 9. no. 10, p. 481 - 491. ISSN 1314-7552.
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
p. 481-491
application/pdf
dc.publisher.none.fl_str_mv Hikari Ltd
publisher.none.fl_str_mv Hikari Ltd
dc.source.none.fl_str_mv Applied Mathematical Sciences, 2015, vol. 9, no 10, p. 481-491
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1848047917858816000
score 12.571709