A Liouville theorem for some Bessel generalized operators
- Autores
- Galli, Vanesa Gisele; Molina, Sandra; Quintero, Alejandro
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we establish a Liouville theorem in (Formula presented.) for a wider class of operators in (Formula presented.) that generalizes the n-dimensional Bessel operator. We will present two different proofs, based in two representation theorems for certain distributions ‘supported in zero’.
Fil: Galli, Vanesa Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Molina, Sandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Quintero, Alejandro. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
BESSEL OPERATOR
HANKEL TRANSFORM
LIOUVILLE THEOREM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100796
Ver los metadatos del registro completo
id |
CONICETDig_2aabe47479d5d77d9dbbd72e3f435a27 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100796 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Liouville theorem for some Bessel generalized operatorsGalli, Vanesa GiseleMolina, SandraQuintero, AlejandroBESSEL OPERATORHANKEL TRANSFORMLIOUVILLE THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we establish a Liouville theorem in (Formula presented.) for a wider class of operators in (Formula presented.) that generalizes the n-dimensional Bessel operator. We will present two different proofs, based in two representation theorems for certain distributions ‘supported in zero’.Fil: Galli, Vanesa Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Molina, Sandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Quintero, Alejandro. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaTaylor & Francis Ltd2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100796Galli, Vanesa Gisele; Molina, Sandra; Quintero, Alejandro; A Liouville theorem for some Bessel generalized operators; Taylor & Francis Ltd; Integral Transforms And Special Functions; 29; 5; 5-2018; 367-3831065-2469CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2018.1441295info:eu-repo/semantics/altIdentifier/doi/10.1080/10652469.2018.1441295info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:02:39Zoai:ri.conicet.gov.ar:11336/100796instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:02:39.809CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Liouville theorem for some Bessel generalized operators |
title |
A Liouville theorem for some Bessel generalized operators |
spellingShingle |
A Liouville theorem for some Bessel generalized operators Galli, Vanesa Gisele BESSEL OPERATOR HANKEL TRANSFORM LIOUVILLE THEOREM |
title_short |
A Liouville theorem for some Bessel generalized operators |
title_full |
A Liouville theorem for some Bessel generalized operators |
title_fullStr |
A Liouville theorem for some Bessel generalized operators |
title_full_unstemmed |
A Liouville theorem for some Bessel generalized operators |
title_sort |
A Liouville theorem for some Bessel generalized operators |
dc.creator.none.fl_str_mv |
Galli, Vanesa Gisele Molina, Sandra Quintero, Alejandro |
author |
Galli, Vanesa Gisele |
author_facet |
Galli, Vanesa Gisele Molina, Sandra Quintero, Alejandro |
author_role |
author |
author2 |
Molina, Sandra Quintero, Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BESSEL OPERATOR HANKEL TRANSFORM LIOUVILLE THEOREM |
topic |
BESSEL OPERATOR HANKEL TRANSFORM LIOUVILLE THEOREM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we establish a Liouville theorem in (Formula presented.) for a wider class of operators in (Formula presented.) that generalizes the n-dimensional Bessel operator. We will present two different proofs, based in two representation theorems for certain distributions ‘supported in zero’. Fil: Galli, Vanesa Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Molina, Sandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Quintero, Alejandro. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In this paper we establish a Liouville theorem in (Formula presented.) for a wider class of operators in (Formula presented.) that generalizes the n-dimensional Bessel operator. We will present two different proofs, based in two representation theorems for certain distributions ‘supported in zero’. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100796 Galli, Vanesa Gisele; Molina, Sandra; Quintero, Alejandro; A Liouville theorem for some Bessel generalized operators; Taylor & Francis Ltd; Integral Transforms And Special Functions; 29; 5; 5-2018; 367-383 1065-2469 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100796 |
identifier_str_mv |
Galli, Vanesa Gisele; Molina, Sandra; Quintero, Alejandro; A Liouville theorem for some Bessel generalized operators; Taylor & Francis Ltd; Integral Transforms And Special Functions; 29; 5; 5-2018; 367-383 1065-2469 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2018.1441295 info:eu-repo/semantics/altIdentifier/doi/10.1080/10652469.2018.1441295 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980031954944000 |
score |
12.993085 |