A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle

Autores
Chelotti, Jose Omar; Vanrell, Sebastián Rodrigo; Milone, Diego Humberto; Utsumi, Santiago A.; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Giovanini, Leonardo Luis
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Assessment of both grazing behavior and herbage intake are two very difficult tasks that can be concurrently accomplished by means of accurate detection, classification and measurement of grazing events such as chews, bites and chew-bites. It is well known that acoustic monitoring is among the best methods to automatically quantify and classify ingestive and rumination events in grazing animals. However, most existing methods of signal analysis appear to be computationally complex and costly, and are therefore difficult to implement. In this work, we present and test a novel analysis system called Chew-Bite Real-Time Algorithm (CBRTA) that works fully automatically in real-time to detect and classify ingestive events of grazing cattle. The system employs a directional wide-frequency microphone facing inwards on the forehead of animals, and a coupled signal analysis and decision logic algorithm that measures shape, amplitude, duration and energy of sound signals to iteratively detect and classify ingestive events. Performance and validation of the CBRTA was determined using two databases of grazing signals. Signals were recorded on dairy cows offered either, natural pasture (N=25), or experimental micro-swards in indoor controlled environment (N=50). The CBRTA exhibited a simple linear complexity capable to execute 50 times faster than real-time and without undermining overall recognition rate and accuracy when signals were processed at 4 kHz sampling frequency and 8 bits quantization. Furthermore, CBRTA was capable to detect ingestive events with a 97.4% success rate, while achieving up to 84.0% success for their classification as exclusive chews, bites or composite chew-bites. The methodology proposed with CBRTA has promising application in embedded microcomputer systems that necessarily depend on fast real-time execution to minimize computational load, power source and storage memory. Such a system can readily facilitate the transmission of processed data through wireless network or the storage in an onboard device.
Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Vanrell, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Utsumi, Santiago A.. Michigan State University; Estados Unidos
Fil: Galli, Julio Ricardo. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Materia
Acoustic monitoring
jaw movement classification
real-time execution
signal processing
Cattle grazing behavior
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/47319

id CONICETDig_940a05fe4c5a936566b9ffb25e290b51
oai_identifier_str oai:ri.conicet.gov.ar:11336/47319
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattleChelotti, Jose OmarVanrell, Sebastián RodrigoMilone, Diego HumbertoUtsumi, Santiago A.Galli, Julio RicardoRufiner, Hugo LeonardoGiovanini, Leonardo LuisAcoustic monitoringjaw movement classificationreal-time executionsignal processingCattle grazing behaviorhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Assessment of both grazing behavior and herbage intake are two very difficult tasks that can be concurrently accomplished by means of accurate detection, classification and measurement of grazing events such as chews, bites and chew-bites. It is well known that acoustic monitoring is among the best methods to automatically quantify and classify ingestive and rumination events in grazing animals. However, most existing methods of signal analysis appear to be computationally complex and costly, and are therefore difficult to implement. In this work, we present and test a novel analysis system called Chew-Bite Real-Time Algorithm (CBRTA) that works fully automatically in real-time to detect and classify ingestive events of grazing cattle. The system employs a directional wide-frequency microphone facing inwards on the forehead of animals, and a coupled signal analysis and decision logic algorithm that measures shape, amplitude, duration and energy of sound signals to iteratively detect and classify ingestive events. Performance and validation of the CBRTA was determined using two databases of grazing signals. Signals were recorded on dairy cows offered either, natural pasture (N=25), or experimental micro-swards in indoor controlled environment (N=50). The CBRTA exhibited a simple linear complexity capable to execute 50 times faster than real-time and without undermining overall recognition rate and accuracy when signals were processed at 4 kHz sampling frequency and 8 bits quantization. Furthermore, CBRTA was capable to detect ingestive events with a 97.4% success rate, while achieving up to 84.0% success for their classification as exclusive chews, bites or composite chew-bites. The methodology proposed with CBRTA has promising application in embedded microcomputer systems that necessarily depend on fast real-time execution to minimize computational load, power source and storage memory. Such a system can readily facilitate the transmission of processed data through wireless network or the storage in an onboard device.Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Vanrell, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Utsumi, Santiago A.. Michigan State University; Estados UnidosFil: Galli, Julio Ricardo. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaElsevier2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47319Chelotti, Jose Omar; Vanrell, Sebastián Rodrigo; Milone, Diego Humberto; Utsumi, Santiago A.; Galli, Julio Ricardo; et al.; A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle; Elsevier; Computers and Eletronics in Agriculture; 127; 5-2016; 64-750168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169916303076info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2016.05.015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:42Zoai:ri.conicet.gov.ar:11336/47319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:43.346CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle
title A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle
spellingShingle A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle
Chelotti, Jose Omar
Acoustic monitoring
jaw movement classification
real-time execution
signal processing
Cattle grazing behavior
title_short A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle
title_full A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle
title_fullStr A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle
title_full_unstemmed A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle
title_sort A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle
dc.creator.none.fl_str_mv Chelotti, Jose Omar
Vanrell, Sebastián Rodrigo
Milone, Diego Humberto
Utsumi, Santiago A.
Galli, Julio Ricardo
Rufiner, Hugo Leonardo
Giovanini, Leonardo Luis
author Chelotti, Jose Omar
author_facet Chelotti, Jose Omar
Vanrell, Sebastián Rodrigo
Milone, Diego Humberto
Utsumi, Santiago A.
Galli, Julio Ricardo
Rufiner, Hugo Leonardo
Giovanini, Leonardo Luis
author_role author
author2 Vanrell, Sebastián Rodrigo
Milone, Diego Humberto
Utsumi, Santiago A.
Galli, Julio Ricardo
Rufiner, Hugo Leonardo
Giovanini, Leonardo Luis
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Acoustic monitoring
jaw movement classification
real-time execution
signal processing
Cattle grazing behavior
topic Acoustic monitoring
jaw movement classification
real-time execution
signal processing
Cattle grazing behavior
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Assessment of both grazing behavior and herbage intake are two very difficult tasks that can be concurrently accomplished by means of accurate detection, classification and measurement of grazing events such as chews, bites and chew-bites. It is well known that acoustic monitoring is among the best methods to automatically quantify and classify ingestive and rumination events in grazing animals. However, most existing methods of signal analysis appear to be computationally complex and costly, and are therefore difficult to implement. In this work, we present and test a novel analysis system called Chew-Bite Real-Time Algorithm (CBRTA) that works fully automatically in real-time to detect and classify ingestive events of grazing cattle. The system employs a directional wide-frequency microphone facing inwards on the forehead of animals, and a coupled signal analysis and decision logic algorithm that measures shape, amplitude, duration and energy of sound signals to iteratively detect and classify ingestive events. Performance and validation of the CBRTA was determined using two databases of grazing signals. Signals were recorded on dairy cows offered either, natural pasture (N=25), or experimental micro-swards in indoor controlled environment (N=50). The CBRTA exhibited a simple linear complexity capable to execute 50 times faster than real-time and without undermining overall recognition rate and accuracy when signals were processed at 4 kHz sampling frequency and 8 bits quantization. Furthermore, CBRTA was capable to detect ingestive events with a 97.4% success rate, while achieving up to 84.0% success for their classification as exclusive chews, bites or composite chew-bites. The methodology proposed with CBRTA has promising application in embedded microcomputer systems that necessarily depend on fast real-time execution to minimize computational load, power source and storage memory. Such a system can readily facilitate the transmission of processed data through wireless network or the storage in an onboard device.
Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Vanrell, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Utsumi, Santiago A.. Michigan State University; Estados Unidos
Fil: Galli, Julio Ricardo. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
description Assessment of both grazing behavior and herbage intake are two very difficult tasks that can be concurrently accomplished by means of accurate detection, classification and measurement of grazing events such as chews, bites and chew-bites. It is well known that acoustic monitoring is among the best methods to automatically quantify and classify ingestive and rumination events in grazing animals. However, most existing methods of signal analysis appear to be computationally complex and costly, and are therefore difficult to implement. In this work, we present and test a novel analysis system called Chew-Bite Real-Time Algorithm (CBRTA) that works fully automatically in real-time to detect and classify ingestive events of grazing cattle. The system employs a directional wide-frequency microphone facing inwards on the forehead of animals, and a coupled signal analysis and decision logic algorithm that measures shape, amplitude, duration and energy of sound signals to iteratively detect and classify ingestive events. Performance and validation of the CBRTA was determined using two databases of grazing signals. Signals were recorded on dairy cows offered either, natural pasture (N=25), or experimental micro-swards in indoor controlled environment (N=50). The CBRTA exhibited a simple linear complexity capable to execute 50 times faster than real-time and without undermining overall recognition rate and accuracy when signals were processed at 4 kHz sampling frequency and 8 bits quantization. Furthermore, CBRTA was capable to detect ingestive events with a 97.4% success rate, while achieving up to 84.0% success for their classification as exclusive chews, bites or composite chew-bites. The methodology proposed with CBRTA has promising application in embedded microcomputer systems that necessarily depend on fast real-time execution to minimize computational load, power source and storage memory. Such a system can readily facilitate the transmission of processed data through wireless network or the storage in an onboard device.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/47319
Chelotti, Jose Omar; Vanrell, Sebastián Rodrigo; Milone, Diego Humberto; Utsumi, Santiago A.; Galli, Julio Ricardo; et al.; A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle; Elsevier; Computers and Eletronics in Agriculture; 127; 5-2016; 64-75
0168-1699
CONICET Digital
CONICET
url http://hdl.handle.net/11336/47319
identifier_str_mv Chelotti, Jose Omar; Vanrell, Sebastián Rodrigo; Milone, Diego Humberto; Utsumi, Santiago A.; Galli, Julio Ricardo; et al.; A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle; Elsevier; Computers and Eletronics in Agriculture; 127; 5-2016; 64-75
0168-1699
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169916303076
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2016.05.015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270056142077952
score 13.13397