Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals
- Autores
- Deniz, Nestor Nahuel; Chelotti, Jose Omar; Galli, Julio Ricardo; Planisich, Alejandra M.; Larripa, Marcelo J.; Rufiner, Hugo Leonardo; Giovanini, Leonardo Luis
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Estimating forage intake and monitoring behavior of grazing livestock are difficult tasks. Real-time detection and classification of events like chew, bite and chew-bite are necessary to estimate that information. It is well-known that acoustic monitoring is one of the best ways to characterize feeding behavior in ruminants. Although several methods have been developed to detect and classify events, their implementation is restricted to desktop computers, fact that confines their application to off-line analysis of a reduced number of animals. In this work, we present the design and implementation of an electronic system specifically developed for real-time monitoring of feeding patterns in dairy cows. The system is based on an embedded circuit to process the sound produced by the animal in order to detect, classify and quantify events of ruminant feeding behavior. The system implements an algorithm recently developed, which was adapted to be executed on a microcontroller-based electronic system. Only the results of sound analysis are stored in flash memory units. In addition to sound information, data from a GPS receiver is also stored, thus building a package of information. A microcontroller with power management technology, combined with a high-efficiency harvesting power supply and power management firmware, enables long operational time (more than five days of continuous operation). The system was evaluated using audio signals derived from the feeding activity of dairy cows that were acquired under normal operational conditions. The system correctly detected 92% of the events (i.e. considering them as possible events without making a classification). When the three types of events (i.e. chew, bite and chew-bite) were considered for classification, the recognition rate was about 78%. These results were obtained using reference labels provided by experts in ruminant ingestive behavior. The technology presented within this publication is protected under the international patent application PCT/IB2015/053721.
Fil: Deniz, Nestor Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Galli, Julio Ricardo. Universidad Nacional de Rosario; Argentina
Fil: Planisich, Alejandra M.. Universidad Nacional de Rosario; Argentina
Fil: Larripa, Marcelo J.. Universidad Nacional de Rosario; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Acoustic Monitoring
Embedded System
Microcontroller
Real-Time Operation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47041
Ver los metadatos del registro completo
id |
CONICETDig_a663476a5e614ee0d06accc438458c7c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47041 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signalsDeniz, Nestor NahuelChelotti, Jose OmarGalli, Julio RicardoPlanisich, Alejandra M.Larripa, Marcelo J.Rufiner, Hugo LeonardoGiovanini, Leonardo LuisAcoustic MonitoringEmbedded SystemMicrocontrollerReal-Time Operationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Estimating forage intake and monitoring behavior of grazing livestock are difficult tasks. Real-time detection and classification of events like chew, bite and chew-bite are necessary to estimate that information. It is well-known that acoustic monitoring is one of the best ways to characterize feeding behavior in ruminants. Although several methods have been developed to detect and classify events, their implementation is restricted to desktop computers, fact that confines their application to off-line analysis of a reduced number of animals. In this work, we present the design and implementation of an electronic system specifically developed for real-time monitoring of feeding patterns in dairy cows. The system is based on an embedded circuit to process the sound produced by the animal in order to detect, classify and quantify events of ruminant feeding behavior. The system implements an algorithm recently developed, which was adapted to be executed on a microcontroller-based electronic system. Only the results of sound analysis are stored in flash memory units. In addition to sound information, data from a GPS receiver is also stored, thus building a package of information. A microcontroller with power management technology, combined with a high-efficiency harvesting power supply and power management firmware, enables long operational time (more than five days of continuous operation). The system was evaluated using audio signals derived from the feeding activity of dairy cows that were acquired under normal operational conditions. The system correctly detected 92% of the events (i.e. considering them as possible events without making a classification). When the three types of events (i.e. chew, bite and chew-bite) were considered for classification, the recognition rate was about 78%. These results were obtained using reference labels provided by experts in ruminant ingestive behavior. The technology presented within this publication is protected under the international patent application PCT/IB2015/053721.Fil: Deniz, Nestor Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Galli, Julio Ricardo. Universidad Nacional de Rosario; ArgentinaFil: Planisich, Alejandra M.. Universidad Nacional de Rosario; ArgentinaFil: Larripa, Marcelo J.. Universidad Nacional de Rosario; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaElsevier2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47041Deniz, Nestor Nahuel; Chelotti, Jose Omar; Galli, Julio Ricardo; Planisich, Alejandra M.; Larripa, Marcelo J.; et al.; Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals; Elsevier; Computers and Eletronics in Agriculture; 138; 6-2017; 167-1740168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S016816991631242Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2017.04.024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:17Zoai:ri.conicet.gov.ar:11336/47041instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:17.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals |
title |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals |
spellingShingle |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals Deniz, Nestor Nahuel Acoustic Monitoring Embedded System Microcontroller Real-Time Operation |
title_short |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals |
title_full |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals |
title_fullStr |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals |
title_full_unstemmed |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals |
title_sort |
Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals |
dc.creator.none.fl_str_mv |
Deniz, Nestor Nahuel Chelotti, Jose Omar Galli, Julio Ricardo Planisich, Alejandra M. Larripa, Marcelo J. Rufiner, Hugo Leonardo Giovanini, Leonardo Luis |
author |
Deniz, Nestor Nahuel |
author_facet |
Deniz, Nestor Nahuel Chelotti, Jose Omar Galli, Julio Ricardo Planisich, Alejandra M. Larripa, Marcelo J. Rufiner, Hugo Leonardo Giovanini, Leonardo Luis |
author_role |
author |
author2 |
Chelotti, Jose Omar Galli, Julio Ricardo Planisich, Alejandra M. Larripa, Marcelo J. Rufiner, Hugo Leonardo Giovanini, Leonardo Luis |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Acoustic Monitoring Embedded System Microcontroller Real-Time Operation |
topic |
Acoustic Monitoring Embedded System Microcontroller Real-Time Operation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Estimating forage intake and monitoring behavior of grazing livestock are difficult tasks. Real-time detection and classification of events like chew, bite and chew-bite are necessary to estimate that information. It is well-known that acoustic monitoring is one of the best ways to characterize feeding behavior in ruminants. Although several methods have been developed to detect and classify events, their implementation is restricted to desktop computers, fact that confines their application to off-line analysis of a reduced number of animals. In this work, we present the design and implementation of an electronic system specifically developed for real-time monitoring of feeding patterns in dairy cows. The system is based on an embedded circuit to process the sound produced by the animal in order to detect, classify and quantify events of ruminant feeding behavior. The system implements an algorithm recently developed, which was adapted to be executed on a microcontroller-based electronic system. Only the results of sound analysis are stored in flash memory units. In addition to sound information, data from a GPS receiver is also stored, thus building a package of information. A microcontroller with power management technology, combined with a high-efficiency harvesting power supply and power management firmware, enables long operational time (more than five days of continuous operation). The system was evaluated using audio signals derived from the feeding activity of dairy cows that were acquired under normal operational conditions. The system correctly detected 92% of the events (i.e. considering them as possible events without making a classification). When the three types of events (i.e. chew, bite and chew-bite) were considered for classification, the recognition rate was about 78%. These results were obtained using reference labels provided by experts in ruminant ingestive behavior. The technology presented within this publication is protected under the international patent application PCT/IB2015/053721. Fil: Deniz, Nestor Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Galli, Julio Ricardo. Universidad Nacional de Rosario; Argentina Fil: Planisich, Alejandra M.. Universidad Nacional de Rosario; Argentina Fil: Larripa, Marcelo J.. Universidad Nacional de Rosario; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
Estimating forage intake and monitoring behavior of grazing livestock are difficult tasks. Real-time detection and classification of events like chew, bite and chew-bite are necessary to estimate that information. It is well-known that acoustic monitoring is one of the best ways to characterize feeding behavior in ruminants. Although several methods have been developed to detect and classify events, their implementation is restricted to desktop computers, fact that confines their application to off-line analysis of a reduced number of animals. In this work, we present the design and implementation of an electronic system specifically developed for real-time monitoring of feeding patterns in dairy cows. The system is based on an embedded circuit to process the sound produced by the animal in order to detect, classify and quantify events of ruminant feeding behavior. The system implements an algorithm recently developed, which was adapted to be executed on a microcontroller-based electronic system. Only the results of sound analysis are stored in flash memory units. In addition to sound information, data from a GPS receiver is also stored, thus building a package of information. A microcontroller with power management technology, combined with a high-efficiency harvesting power supply and power management firmware, enables long operational time (more than five days of continuous operation). The system was evaluated using audio signals derived from the feeding activity of dairy cows that were acquired under normal operational conditions. The system correctly detected 92% of the events (i.e. considering them as possible events without making a classification). When the three types of events (i.e. chew, bite and chew-bite) were considered for classification, the recognition rate was about 78%. These results were obtained using reference labels provided by experts in ruminant ingestive behavior. The technology presented within this publication is protected under the international patent application PCT/IB2015/053721. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47041 Deniz, Nestor Nahuel; Chelotti, Jose Omar; Galli, Julio Ricardo; Planisich, Alejandra M.; Larripa, Marcelo J.; et al.; Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals; Elsevier; Computers and Eletronics in Agriculture; 138; 6-2017; 167-174 0168-1699 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47041 |
identifier_str_mv |
Deniz, Nestor Nahuel; Chelotti, Jose Omar; Galli, Julio Ricardo; Planisich, Alejandra M.; Larripa, Marcelo J.; et al.; Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals; Elsevier; Computers and Eletronics in Agriculture; 138; 6-2017; 167-174 0168-1699 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S016816991631242X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2017.04.024 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269149104963584 |
score |
13.13397 |