Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes
- Autores
- Sookoian, Silvia Cristina; Fernández Gianotti, Tomás; Schuman, Mariano Luis; Pirola, Carlos José
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Purpose: We present an approach to prioritize single nucleotide polymorphisms for further follow-up in genome-wide association studies of type 2 diabetes. Method: The proposed method combines both the use of open data access from two type 2 diabetes-genome-wide association studies (granted by the Diabetes Genetics Initiative and the Welcome Trust Case Control Consortium) and the comprehensive analysis of candidate regions generated by the freely accessible ENDEAVOUR software. Results: The algorithm prioritized all genes of the whole genome in relation to type 2 diabetes. There were six of 1096 single nucleotide polymorphisms in five genes potentially associated with type 2 diabetes: tachykinin receptor 3 (rs1384401), anaplastic lymphoma receptor tyrosine kinase (rs4319896), calcium channel, voltage-dependent, L type, alpha 1D subunit (rs12487452), FOXO1A (rs10507486 and rs7323267), and v-akt murine thymoma viral oncogene homolog 3 (rs897959). We estimated the fixed effect and P values of each single nucleotide polymorphism in the combined dataset by Mantel-Haenszel meta-analysis and we observed significant P values for all single nucleotide polymorphisms except for rs897959 at v-akt murine thymoma viral oncogene homolog 3. Conclusion: The proposed strategy may be used as an alternative tool for optimizing the information of the nearly 500,000 gene variants in which markers with modest significant P value for disease association are currently disregarded. Additionally, the said single nucleotide polymorphisms may be incorporated into the replication of the multistage design involved in the genome-wide association studies.
Fil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina
Fil: Fernández Gianotti, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina
Fil: Schuman, Mariano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina
Fil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina - Materia
-
GENOME-WIDE ASSOCIATION STUDIES
GENES
TYPE 2 DIABETES
ENDEAVOUR
CANDIDATE GENES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103282
Ver los metadatos del registro completo
id |
CONICETDig_93ef00f782afb155bae2eccd71a8ea88 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103282 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetesSookoian, Silvia CristinaFernández Gianotti, TomásSchuman, Mariano LuisPirola, Carlos JoséGENOME-WIDE ASSOCIATION STUDIESGENESTYPE 2 DIABETESENDEAVOURCANDIDATE GENEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Purpose: We present an approach to prioritize single nucleotide polymorphisms for further follow-up in genome-wide association studies of type 2 diabetes. Method: The proposed method combines both the use of open data access from two type 2 diabetes-genome-wide association studies (granted by the Diabetes Genetics Initiative and the Welcome Trust Case Control Consortium) and the comprehensive analysis of candidate regions generated by the freely accessible ENDEAVOUR software. Results: The algorithm prioritized all genes of the whole genome in relation to type 2 diabetes. There were six of 1096 single nucleotide polymorphisms in five genes potentially associated with type 2 diabetes: tachykinin receptor 3 (rs1384401), anaplastic lymphoma receptor tyrosine kinase (rs4319896), calcium channel, voltage-dependent, L type, alpha 1D subunit (rs12487452), FOXO1A (rs10507486 and rs7323267), and v-akt murine thymoma viral oncogene homolog 3 (rs897959). We estimated the fixed effect and P values of each single nucleotide polymorphism in the combined dataset by Mantel-Haenszel meta-analysis and we observed significant P values for all single nucleotide polymorphisms except for rs897959 at v-akt murine thymoma viral oncogene homolog 3. Conclusion: The proposed strategy may be used as an alternative tool for optimizing the information of the nearly 500,000 gene variants in which markers with modest significant P value for disease association are currently disregarded. Additionally, the said single nucleotide polymorphisms may be incorporated into the replication of the multistage design involved in the genome-wide association studies.Fil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Fernández Gianotti, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Schuman, Mariano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaLippincott Williams2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103282Sookoian, Silvia Cristina; Fernández Gianotti, Tomás; Schuman, Mariano Luis; Pirola, Carlos José; Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes; Lippincott Williams; Genetics In Medicine; 11; 5; 5-2009; 338-3431098-3600CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1097/GIM.0b013e31819995cainfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/gim200946info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:24:35Zoai:ri.conicet.gov.ar:11336/103282instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:24:36.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes |
title |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes |
spellingShingle |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes Sookoian, Silvia Cristina GENOME-WIDE ASSOCIATION STUDIES GENES TYPE 2 DIABETES ENDEAVOUR CANDIDATE GENES |
title_short |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes |
title_full |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes |
title_fullStr |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes |
title_full_unstemmed |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes |
title_sort |
Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes |
dc.creator.none.fl_str_mv |
Sookoian, Silvia Cristina Fernández Gianotti, Tomás Schuman, Mariano Luis Pirola, Carlos José |
author |
Sookoian, Silvia Cristina |
author_facet |
Sookoian, Silvia Cristina Fernández Gianotti, Tomás Schuman, Mariano Luis Pirola, Carlos José |
author_role |
author |
author2 |
Fernández Gianotti, Tomás Schuman, Mariano Luis Pirola, Carlos José |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
GENOME-WIDE ASSOCIATION STUDIES GENES TYPE 2 DIABETES ENDEAVOUR CANDIDATE GENES |
topic |
GENOME-WIDE ASSOCIATION STUDIES GENES TYPE 2 DIABETES ENDEAVOUR CANDIDATE GENES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Purpose: We present an approach to prioritize single nucleotide polymorphisms for further follow-up in genome-wide association studies of type 2 diabetes. Method: The proposed method combines both the use of open data access from two type 2 diabetes-genome-wide association studies (granted by the Diabetes Genetics Initiative and the Welcome Trust Case Control Consortium) and the comprehensive analysis of candidate regions generated by the freely accessible ENDEAVOUR software. Results: The algorithm prioritized all genes of the whole genome in relation to type 2 diabetes. There were six of 1096 single nucleotide polymorphisms in five genes potentially associated with type 2 diabetes: tachykinin receptor 3 (rs1384401), anaplastic lymphoma receptor tyrosine kinase (rs4319896), calcium channel, voltage-dependent, L type, alpha 1D subunit (rs12487452), FOXO1A (rs10507486 and rs7323267), and v-akt murine thymoma viral oncogene homolog 3 (rs897959). We estimated the fixed effect and P values of each single nucleotide polymorphism in the combined dataset by Mantel-Haenszel meta-analysis and we observed significant P values for all single nucleotide polymorphisms except for rs897959 at v-akt murine thymoma viral oncogene homolog 3. Conclusion: The proposed strategy may be used as an alternative tool for optimizing the information of the nearly 500,000 gene variants in which markers with modest significant P value for disease association are currently disregarded. Additionally, the said single nucleotide polymorphisms may be incorporated into the replication of the multistage design involved in the genome-wide association studies. Fil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina Fil: Fernández Gianotti, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina Fil: Schuman, Mariano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina Fil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina |
description |
Purpose: We present an approach to prioritize single nucleotide polymorphisms for further follow-up in genome-wide association studies of type 2 diabetes. Method: The proposed method combines both the use of open data access from two type 2 diabetes-genome-wide association studies (granted by the Diabetes Genetics Initiative and the Welcome Trust Case Control Consortium) and the comprehensive analysis of candidate regions generated by the freely accessible ENDEAVOUR software. Results: The algorithm prioritized all genes of the whole genome in relation to type 2 diabetes. There were six of 1096 single nucleotide polymorphisms in five genes potentially associated with type 2 diabetes: tachykinin receptor 3 (rs1384401), anaplastic lymphoma receptor tyrosine kinase (rs4319896), calcium channel, voltage-dependent, L type, alpha 1D subunit (rs12487452), FOXO1A (rs10507486 and rs7323267), and v-akt murine thymoma viral oncogene homolog 3 (rs897959). We estimated the fixed effect and P values of each single nucleotide polymorphism in the combined dataset by Mantel-Haenszel meta-analysis and we observed significant P values for all single nucleotide polymorphisms except for rs897959 at v-akt murine thymoma viral oncogene homolog 3. Conclusion: The proposed strategy may be used as an alternative tool for optimizing the information of the nearly 500,000 gene variants in which markers with modest significant P value for disease association are currently disregarded. Additionally, the said single nucleotide polymorphisms may be incorporated into the replication of the multistage design involved in the genome-wide association studies. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103282 Sookoian, Silvia Cristina; Fernández Gianotti, Tomás; Schuman, Mariano Luis; Pirola, Carlos José; Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes; Lippincott Williams; Genetics In Medicine; 11; 5; 5-2009; 338-343 1098-3600 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103282 |
identifier_str_mv |
Sookoian, Silvia Cristina; Fernández Gianotti, Tomás; Schuman, Mariano Luis; Pirola, Carlos José; Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes; Lippincott Williams; Genetics In Medicine; 11; 5; 5-2009; 338-343 1098-3600 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1097/GIM.0b013e31819995ca info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/gim200946 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Lippincott Williams |
publisher.none.fl_str_mv |
Lippincott Williams |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083392780632064 |
score |
13.22299 |