Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic
- Autores
- D'elía, Noelia Laura; Gravina, Noel; Ruso, Juan M.; Laiuppa, Juan Andrés; Santillan, Graciela Edith; Messina, Paula Veronica
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Nano-hydroxyapatite particles have better bioactivity than the coarse crystals. So, they can be utilized for engineered tissue implants with improved efficiency over other materials. The development of materials with specific bioactive characteristics is still under investigation. Methods: The surface properties of four hydroxyapatitematerials templated by differentmicelle-polymer structured network are studied. The synergistic interaction of each block copolymer in contact with CTAB rod-like micelles results in crystalline HAp nano-rods of 25-50 nm length organized in hierarchical structures with different micro-rough characteristics. Results: It was observed that the material in vitro bioactivity strongly depends on the surface structure while in a minor extent on their Ca/P ratio. So, MIII and MIV materials with Skewness parameter Rsk N 2.62 favored the formation on their surfaces of net-like phase with a high growth kinetic constant; while MI and MII (Rsk = 2.62) induced the appearance of spherulitic-like structures and a growth rate 1.75 times inferior. Material biocompatibility was confirmed by interaction with rat calvarial osteoblasts. Conclusions: The different structures growth is attributed to a dissimilar matching of crystal planes in the material and the apatite layer formed. In specific synthesis conditions, a biocompatible material with a Ca/P ratio close to that for the trabecular bone and a morphology that are considered essential for bone-bonding was obtained. General significance: The creation of implantable devices with a specific bioactive characteristic may be useful to manipulate the attachment of cells on mineral coating directly affecting the stability and life of the implant. This article is part of a Special Issue entitled: Protein trafficking & Secretion.
Fil: D'elía, Noelia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; Argentina
Fil: Gravina, Noel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; Argentina
Fil: Ruso, Juan M.. Universidad de Santiago de Compostela. Facultad de Fisica; España
Fil: Laiuppa, Juan Andrés. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
Fil: Santillan, Graciela Edith. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
Fil: Messina, Paula Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; Argentina - Materia
-
Hydroxiapatite
Trabecular Bone
Bioactivity
Osteoblasts Viability
Nano-Rods
Sol-Gel Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5422
Ver los metadatos del registro completo
id |
CONICETDig_93ea663e1d1bed8847f3241d00b6bd1c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5422 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kineticD'elía, Noelia LauraGravina, NoelRuso, Juan M.Laiuppa, Juan AndrésSantillan, Graciela EdithMessina, Paula VeronicaHydroxiapatiteTrabecular BoneBioactivityOsteoblasts ViabilityNano-RodsSol-Gel Methodhttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Background: Nano-hydroxyapatite particles have better bioactivity than the coarse crystals. So, they can be utilized for engineered tissue implants with improved efficiency over other materials. The development of materials with specific bioactive characteristics is still under investigation. Methods: The surface properties of four hydroxyapatitematerials templated by differentmicelle-polymer structured network are studied. The synergistic interaction of each block copolymer in contact with CTAB rod-like micelles results in crystalline HAp nano-rods of 25-50 nm length organized in hierarchical structures with different micro-rough characteristics. Results: It was observed that the material in vitro bioactivity strongly depends on the surface structure while in a minor extent on their Ca/P ratio. So, MIII and MIV materials with Skewness parameter Rsk N 2.62 favored the formation on their surfaces of net-like phase with a high growth kinetic constant; while MI and MII (Rsk = 2.62) induced the appearance of spherulitic-like structures and a growth rate 1.75 times inferior. Material biocompatibility was confirmed by interaction with rat calvarial osteoblasts. Conclusions: The different structures growth is attributed to a dissimilar matching of crystal planes in the material and the apatite layer formed. In specific synthesis conditions, a biocompatible material with a Ca/P ratio close to that for the trabecular bone and a morphology that are considered essential for bone-bonding was obtained. General significance: The creation of implantable devices with a specific bioactive characteristic may be useful to manipulate the attachment of cells on mineral coating directly affecting the stability and life of the implant. This article is part of a Special Issue entitled: Protein trafficking & Secretion.Fil: D'elía, Noelia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; ArgentinaFil: Gravina, Noel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; ArgentinaFil: Ruso, Juan M.. Universidad de Santiago de Compostela. Facultad de Fisica; EspañaFil: Laiuppa, Juan Andrés. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Santillan, Graciela Edith. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Messina, Paula Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; ArgentinaElsevier2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5422D'elía, Noelia Laura; Gravina, Noel; Ruso, Juan M.; Laiuppa, Juan Andrés; Santillan, Graciela Edith; et al.; Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic; Elsevier; Biochimica et Biophysica Acta- General Subjects; 1830; 11; 11-2013; 5014-50260304-4165enginfo:eu-repo/semantics/altIdentifier/pmid/23891938info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bbagen.2013.07.020info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304416513003231info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:36:21Zoai:ri.conicet.gov.ar:11336/5422instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:36:21.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic |
title |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic |
spellingShingle |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic D'elía, Noelia Laura Hydroxiapatite Trabecular Bone Bioactivity Osteoblasts Viability Nano-Rods Sol-Gel Method |
title_short |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic |
title_full |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic |
title_fullStr |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic |
title_full_unstemmed |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic |
title_sort |
Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic |
dc.creator.none.fl_str_mv |
D'elía, Noelia Laura Gravina, Noel Ruso, Juan M. Laiuppa, Juan Andrés Santillan, Graciela Edith Messina, Paula Veronica |
author |
D'elía, Noelia Laura |
author_facet |
D'elía, Noelia Laura Gravina, Noel Ruso, Juan M. Laiuppa, Juan Andrés Santillan, Graciela Edith Messina, Paula Veronica |
author_role |
author |
author2 |
Gravina, Noel Ruso, Juan M. Laiuppa, Juan Andrés Santillan, Graciela Edith Messina, Paula Veronica |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Hydroxiapatite Trabecular Bone Bioactivity Osteoblasts Viability Nano-Rods Sol-Gel Method |
topic |
Hydroxiapatite Trabecular Bone Bioactivity Osteoblasts Viability Nano-Rods Sol-Gel Method |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.4 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background: Nano-hydroxyapatite particles have better bioactivity than the coarse crystals. So, they can be utilized for engineered tissue implants with improved efficiency over other materials. The development of materials with specific bioactive characteristics is still under investigation. Methods: The surface properties of four hydroxyapatitematerials templated by differentmicelle-polymer structured network are studied. The synergistic interaction of each block copolymer in contact with CTAB rod-like micelles results in crystalline HAp nano-rods of 25-50 nm length organized in hierarchical structures with different micro-rough characteristics. Results: It was observed that the material in vitro bioactivity strongly depends on the surface structure while in a minor extent on their Ca/P ratio. So, MIII and MIV materials with Skewness parameter Rsk N 2.62 favored the formation on their surfaces of net-like phase with a high growth kinetic constant; while MI and MII (Rsk = 2.62) induced the appearance of spherulitic-like structures and a growth rate 1.75 times inferior. Material biocompatibility was confirmed by interaction with rat calvarial osteoblasts. Conclusions: The different structures growth is attributed to a dissimilar matching of crystal planes in the material and the apatite layer formed. In specific synthesis conditions, a biocompatible material with a Ca/P ratio close to that for the trabecular bone and a morphology that are considered essential for bone-bonding was obtained. General significance: The creation of implantable devices with a specific bioactive characteristic may be useful to manipulate the attachment of cells on mineral coating directly affecting the stability and life of the implant. This article is part of a Special Issue entitled: Protein trafficking & Secretion. Fil: D'elía, Noelia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; Argentina Fil: Gravina, Noel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; Argentina Fil: Ruso, Juan M.. Universidad de Santiago de Compostela. Facultad de Fisica; España Fil: Laiuppa, Juan Andrés. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina Fil: Santillan, Graciela Edith. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina Fil: Messina, Paula Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur; Argentina |
description |
Background: Nano-hydroxyapatite particles have better bioactivity than the coarse crystals. So, they can be utilized for engineered tissue implants with improved efficiency over other materials. The development of materials with specific bioactive characteristics is still under investigation. Methods: The surface properties of four hydroxyapatitematerials templated by differentmicelle-polymer structured network are studied. The synergistic interaction of each block copolymer in contact with CTAB rod-like micelles results in crystalline HAp nano-rods of 25-50 nm length organized in hierarchical structures with different micro-rough characteristics. Results: It was observed that the material in vitro bioactivity strongly depends on the surface structure while in a minor extent on their Ca/P ratio. So, MIII and MIV materials with Skewness parameter Rsk N 2.62 favored the formation on their surfaces of net-like phase with a high growth kinetic constant; while MI and MII (Rsk = 2.62) induced the appearance of spherulitic-like structures and a growth rate 1.75 times inferior. Material biocompatibility was confirmed by interaction with rat calvarial osteoblasts. Conclusions: The different structures growth is attributed to a dissimilar matching of crystal planes in the material and the apatite layer formed. In specific synthesis conditions, a biocompatible material with a Ca/P ratio close to that for the trabecular bone and a morphology that are considered essential for bone-bonding was obtained. General significance: The creation of implantable devices with a specific bioactive characteristic may be useful to manipulate the attachment of cells on mineral coating directly affecting the stability and life of the implant. This article is part of a Special Issue entitled: Protein trafficking & Secretion. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5422 D'elía, Noelia Laura; Gravina, Noel; Ruso, Juan M.; Laiuppa, Juan Andrés; Santillan, Graciela Edith; et al.; Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic; Elsevier; Biochimica et Biophysica Acta- General Subjects; 1830; 11; 11-2013; 5014-5026 0304-4165 |
url |
http://hdl.handle.net/11336/5422 |
identifier_str_mv |
D'elía, Noelia Laura; Gravina, Noel; Ruso, Juan M.; Laiuppa, Juan Andrés; Santillan, Graciela Edith; et al.; Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: Effects on mineral coating morphology and growth kinetic; Elsevier; Biochimica et Biophysica Acta- General Subjects; 1830; 11; 11-2013; 5014-5026 0304-4165 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/pmid/23891938 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bbagen.2013.07.020 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304416513003231 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782004455014400 |
score |
12.982451 |