Differential geometry of partial isometries and partial unitaries

Autores
Andruchow, Esteban; Corach, Gustavo
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let a be a C^*-algebra. In this paper the sets I of partial isometries and I_Δ ⊂ I of partial unitaries (i.e., partial isometries which commute with their adjoints) are studied from a differential geometric point of view. These sets are complemented submanifolds of A. Special attention is paid to geodesic curves. The space I is a homogeneous reductive space of the group U_A x U_A, where U_a denotes the unitary group of A, and geodesics are computed in a standard fashion. Here we study the problem of the existence and uniqueness of geodesics joining two given endpoints. The space I_Δ is not homogeneous, and therefore  a completely different treatment is given. A  principal bundle with base space I_Δ is introduced, and a natural connection in it defined. Additional data, namely certain translating maps, enable one to produce a linear connection in I_Δ, whose geodesics are characterized.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Materia
PARTIAL ISOMETRIES
UNITARY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/109662

id CONICETDig_3be6dc859b25f16d3885218ee1c81a4f
oai_identifier_str oai:ri.conicet.gov.ar:11336/109662
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Differential geometry of partial isometries and partial unitariesAndruchow, EstebanCorach, GustavoPARTIAL ISOMETRIESUNITARYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let a be a C^*-algebra. In this paper the sets I of partial isometries and I_Δ ⊂ I of partial unitaries (i.e., partial isometries which commute with their adjoints) are studied from a differential geometric point of view. These sets are complemented submanifolds of A. Special attention is paid to geodesic curves. The space I is a homogeneous reductive space of the group U_A x U_A, where U_a denotes the unitary group of A, and geodesics are computed in a standard fashion. Here we study the problem of the existence and uniqueness of geodesics joining two given endpoints. The space I_Δ is not homogeneous, and therefore  a completely different treatment is given. A  principal bundle with base space I_Δ is introduced, and a natural connection in it defined. Additional data, namely certain translating maps, enable one to produce a linear connection in I_Δ, whose geodesics are characterized.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaUniversity of Illinois at Urbana-Champaign2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109662Andruchow, Esteban; Corach, Gustavo; Differential geometry of partial isometries and partial unitaries; University of Illinois at Urbana-Champaign; Illinois Journal Of Mathematics; 48; 1; 12-2004; 97-1200019-2082CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.ijm/1258136176info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:49:40Zoai:ri.conicet.gov.ar:11336/109662instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:49:40.355CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Differential geometry of partial isometries and partial unitaries
title Differential geometry of partial isometries and partial unitaries
spellingShingle Differential geometry of partial isometries and partial unitaries
Andruchow, Esteban
PARTIAL ISOMETRIES
UNITARY
title_short Differential geometry of partial isometries and partial unitaries
title_full Differential geometry of partial isometries and partial unitaries
title_fullStr Differential geometry of partial isometries and partial unitaries
title_full_unstemmed Differential geometry of partial isometries and partial unitaries
title_sort Differential geometry of partial isometries and partial unitaries
dc.creator.none.fl_str_mv Andruchow, Esteban
Corach, Gustavo
author Andruchow, Esteban
author_facet Andruchow, Esteban
Corach, Gustavo
author_role author
author2 Corach, Gustavo
author2_role author
dc.subject.none.fl_str_mv PARTIAL ISOMETRIES
UNITARY
topic PARTIAL ISOMETRIES
UNITARY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let a be a C^*-algebra. In this paper the sets I of partial isometries and I_Δ ⊂ I of partial unitaries (i.e., partial isometries which commute with their adjoints) are studied from a differential geometric point of view. These sets are complemented submanifolds of A. Special attention is paid to geodesic curves. The space I is a homogeneous reductive space of the group U_A x U_A, where U_a denotes the unitary group of A, and geodesics are computed in a standard fashion. Here we study the problem of the existence and uniqueness of geodesics joining two given endpoints. The space I_Δ is not homogeneous, and therefore  a completely different treatment is given. A  principal bundle with base space I_Δ is introduced, and a natural connection in it defined. Additional data, namely certain translating maps, enable one to produce a linear connection in I_Δ, whose geodesics are characterized.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
description Let a be a C^*-algebra. In this paper the sets I of partial isometries and I_Δ ⊂ I of partial unitaries (i.e., partial isometries which commute with their adjoints) are studied from a differential geometric point of view. These sets are complemented submanifolds of A. Special attention is paid to geodesic curves. The space I is a homogeneous reductive space of the group U_A x U_A, where U_a denotes the unitary group of A, and geodesics are computed in a standard fashion. Here we study the problem of the existence and uniqueness of geodesics joining two given endpoints. The space I_Δ is not homogeneous, and therefore  a completely different treatment is given. A  principal bundle with base space I_Δ is introduced, and a natural connection in it defined. Additional data, namely certain translating maps, enable one to produce a linear connection in I_Δ, whose geodesics are characterized.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/109662
Andruchow, Esteban; Corach, Gustavo; Differential geometry of partial isometries and partial unitaries; University of Illinois at Urbana-Champaign; Illinois Journal Of Mathematics; 48; 1; 12-2004; 97-120
0019-2082
CONICET Digital
CONICET
url http://hdl.handle.net/11336/109662
identifier_str_mv Andruchow, Esteban; Corach, Gustavo; Differential geometry of partial isometries and partial unitaries; University of Illinois at Urbana-Champaign; Illinois Journal Of Mathematics; 48; 1; 12-2004; 97-120
0019-2082
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.ijm/1258136176
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv University of Illinois at Urbana-Champaign
publisher.none.fl_str_mv University of Illinois at Urbana-Champaign
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083019813683200
score 13.216834