Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap

Autores
Massey, Pedro Gustavo
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of h-dimensional dominant subspaces and low-rank approximations of matrices A ∈ Km×n (where K = R or C) in the case that there is no singular gap at the index h i.e., if σh = σh+1 (where σ1 ≥ . . . ≥ σp ≥ 0 denote the singular values of A, and p = min{m, n}). Indeed, starting with a (deterministic) matrix X ∈ Kn×r with r ≥ h satisfying a compatibility assumption with some h-dimensional right dominant subspace of A, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index h (which is zero in this case) we exploit the nearest existing singular gaps
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
DOMINANT SUBSPACES
LOW-RANK APPROXIMATION
SINGULAR VALUE DECOMPOSITION
PRINCIPAL ANGLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/277219

id CONICETDig_935864803104b8d4396062a8930f0761
oai_identifier_str oai:ri.conicet.gov.ar:11336/277219
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gapMassey, Pedro GustavoDOMINANT SUBSPACESLOW-RANK APPROXIMATIONSINGULAR VALUE DECOMPOSITIONPRINCIPAL ANGLEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of h-dimensional dominant subspaces and low-rank approximations of matrices A ∈ Km×n (where K = R or C) in the case that there is no singular gap at the index h i.e., if σh = σh+1 (where σ1 ≥ . . . ≥ σp ≥ 0 denote the singular values of A, and p = min{m, n}). Indeed, starting with a (deterministic) matrix X ∈ Kn×r with r ≥ h satisfying a compatibility assumption with some h-dimensional right dominant subspace of A, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index h (which is zero in this case) we exploit the nearest existing singular gapsFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science Inc.2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277219Massey, Pedro Gustavo; Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap; Elsevier Science Inc.; Linear Algebra and its Applications; 708; 3-2025; 112-1490024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379524004415?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2024.11.021info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2107.01990info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:38:37Zoai:ri.conicet.gov.ar:11336/277219instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:38:38.005CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
title Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
spellingShingle Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
Massey, Pedro Gustavo
DOMINANT SUBSPACES
LOW-RANK APPROXIMATION
SINGULAR VALUE DECOMPOSITION
PRINCIPAL ANGLES
title_short Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
title_full Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
title_fullStr Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
title_full_unstemmed Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
title_sort Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
author_role author
dc.subject.none.fl_str_mv DOMINANT SUBSPACES
LOW-RANK APPROXIMATION
SINGULAR VALUE DECOMPOSITION
PRINCIPAL ANGLES
topic DOMINANT SUBSPACES
LOW-RANK APPROXIMATION
SINGULAR VALUE DECOMPOSITION
PRINCIPAL ANGLES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of h-dimensional dominant subspaces and low-rank approximations of matrices A ∈ Km×n (where K = R or C) in the case that there is no singular gap at the index h i.e., if σh = σh+1 (where σ1 ≥ . . . ≥ σp ≥ 0 denote the singular values of A, and p = min{m, n}). Indeed, starting with a (deterministic) matrix X ∈ Kn×r with r ≥ h satisfying a compatibility assumption with some h-dimensional right dominant subspace of A, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index h (which is zero in this case) we exploit the nearest existing singular gaps
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of h-dimensional dominant subspaces and low-rank approximations of matrices A ∈ Km×n (where K = R or C) in the case that there is no singular gap at the index h i.e., if σh = σh+1 (where σ1 ≥ . . . ≥ σp ≥ 0 denote the singular values of A, and p = min{m, n}). Indeed, starting with a (deterministic) matrix X ∈ Kn×r with r ≥ h satisfying a compatibility assumption with some h-dimensional right dominant subspace of A, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index h (which is zero in this case) we exploit the nearest existing singular gaps
publishDate 2025
dc.date.none.fl_str_mv 2025-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/277219
Massey, Pedro Gustavo; Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap; Elsevier Science Inc.; Linear Algebra and its Applications; 708; 3-2025; 112-149
0024-3795
CONICET Digital
CONICET
url http://hdl.handle.net/11336/277219
identifier_str_mv Massey, Pedro Gustavo; Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap; Elsevier Science Inc.; Linear Algebra and its Applications; 708; 3-2025; 112-149
0024-3795
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379524004415?via%3Dihub
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2024.11.021
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2107.01990
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc.
publisher.none.fl_str_mv Elsevier Science Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335763302121472
score 12.952241