Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
- Autores
- Massey, Pedro Gustavo
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of h-dimensional dominant subspaces and low-rank approximations of matrices A ∈ Km×n (where K = R or C) in the case that there is no singular gap at the index h i.e., if σh = σh+1 (where σ1 ≥ . . . ≥ σp ≥ 0 denote the singular values of A, and p = min{m, n}). Indeed, starting with a (deterministic) matrix X ∈ Kn×r with r ≥ h satisfying a compatibility assumption with some h-dimensional right dominant subspace of A, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index h (which is zero in this case) we exploit the nearest existing singular gaps
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
DOMINANT SUBSPACES
LOW-RANK APPROXIMATION
SINGULAR VALUE DECOMPOSITION
PRINCIPAL ANGLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277219
Ver los metadatos del registro completo
| id |
CONICETDig_935864803104b8d4396062a8930f0761 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277219 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gapMassey, Pedro GustavoDOMINANT SUBSPACESLOW-RANK APPROXIMATIONSINGULAR VALUE DECOMPOSITIONPRINCIPAL ANGLEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of h-dimensional dominant subspaces and low-rank approximations of matrices A ∈ Km×n (where K = R or C) in the case that there is no singular gap at the index h i.e., if σh = σh+1 (where σ1 ≥ . . . ≥ σp ≥ 0 denote the singular values of A, and p = min{m, n}). Indeed, starting with a (deterministic) matrix X ∈ Kn×r with r ≥ h satisfying a compatibility assumption with some h-dimensional right dominant subspace of A, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index h (which is zero in this case) we exploit the nearest existing singular gapsFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science Inc.2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277219Massey, Pedro Gustavo; Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap; Elsevier Science Inc.; Linear Algebra and its Applications; 708; 3-2025; 112-1490024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379524004415?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2024.11.021info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2107.01990info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:38:37Zoai:ri.conicet.gov.ar:11336/277219instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:38:38.005CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap |
| title |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap |
| spellingShingle |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap Massey, Pedro Gustavo DOMINANT SUBSPACES LOW-RANK APPROXIMATION SINGULAR VALUE DECOMPOSITION PRINCIPAL ANGLES |
| title_short |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap |
| title_full |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap |
| title_fullStr |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap |
| title_full_unstemmed |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap |
| title_sort |
Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap |
| dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo |
| author |
Massey, Pedro Gustavo |
| author_facet |
Massey, Pedro Gustavo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
DOMINANT SUBSPACES LOW-RANK APPROXIMATION SINGULAR VALUE DECOMPOSITION PRINCIPAL ANGLES |
| topic |
DOMINANT SUBSPACES LOW-RANK APPROXIMATION SINGULAR VALUE DECOMPOSITION PRINCIPAL ANGLES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of h-dimensional dominant subspaces and low-rank approximations of matrices A ∈ Km×n (where K = R or C) in the case that there is no singular gap at the index h i.e., if σh = σh+1 (where σ1 ≥ . . . ≥ σp ≥ 0 denote the singular values of A, and p = min{m, n}). Indeed, starting with a (deterministic) matrix X ∈ Kn×r with r ≥ h satisfying a compatibility assumption with some h-dimensional right dominant subspace of A, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index h (which is zero in this case) we exploit the nearest existing singular gaps Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
We develop a novel convergence analysis of the classical deterministic block Krylov methods for the approximation of h-dimensional dominant subspaces and low-rank approximations of matrices A ∈ Km×n (where K = R or C) in the case that there is no singular gap at the index h i.e., if σh = σh+1 (where σ1 ≥ . . . ≥ σp ≥ 0 denote the singular values of A, and p = min{m, n}). Indeed, starting with a (deterministic) matrix X ∈ Kn×r with r ≥ h satisfying a compatibility assumption with some h-dimensional right dominant subspace of A, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on the approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at the prescribed index h (which is zero in this case) we exploit the nearest existing singular gaps |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277219 Massey, Pedro Gustavo; Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap; Elsevier Science Inc.; Linear Algebra and its Applications; 708; 3-2025; 112-149 0024-3795 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277219 |
| identifier_str_mv |
Massey, Pedro Gustavo; Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap; Elsevier Science Inc.; Linear Algebra and its Applications; 708; 3-2025; 112-149 0024-3795 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379524004415?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2024.11.021 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2107.01990 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
| publisher.none.fl_str_mv |
Elsevier Science Inc. |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335763302121472 |
| score |
12.952241 |