Proper subspaces and compatibility
- Autores
- Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let E be a Banach space contained in a Hilbert space L. Assume thatthe inclusion is continuous with dense range. Following the terminology of Gohberg andZambicki, we say that a bounded operator on E is a proper operator if it admits anadjoint with respect to the inner product of L. A proper operator which is self-adjointwith respect to the inner product of L is called symmetrizable. By a proper subspace Swe mean a closed subspace of E which is the range of a proper projection. Furthermore,if there exists a symmetrizable projection onto S, then S belongs to a well-known class ofsubspaces called compatible subspaces. We nd equivalent conditions to describe propersubspaces. Then we prove a necessary and sucient condition for a proper subspace tobe compatible. The existence of non-compatible proper subspaces is related to spectralproperties of symmetrizable operators. Each proper subspace S has a supplement T whichis also a proper subspace.We give a characterization of the compatibility of both subspacesS and T . Several examples are provided that illustrate dierent situations between properand compatible subspaces
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
PROJECTION
COMPATIBLE SUBSPACE
PROPER OPERATOR
SPECTRUM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18930
Ver los metadatos del registro completo
id |
CONICETDig_d2424bc441fc54a1daf970980cda6fbc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18930 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Proper subspaces and compatibilityAndruchow, EstebanChiumiento, Eduardo HernanDi Iorio y Lucero, María EugeniaPROJECTIONCOMPATIBLE SUBSPACEPROPER OPERATORSPECTRUMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let E be a Banach space contained in a Hilbert space L. Assume thatthe inclusion is continuous with dense range. Following the terminology of Gohberg andZambicki, we say that a bounded operator on E is a proper operator if it admits anadjoint with respect to the inner product of L. A proper operator which is self-adjointwith respect to the inner product of L is called symmetrizable. By a proper subspace Swe mean a closed subspace of E which is the range of a proper projection. Furthermore,if there exists a symmetrizable projection onto S, then S belongs to a well-known class ofsubspaces called compatible subspaces. We nd equivalent conditions to describe propersubspaces. Then we prove a necessary and sucient condition for a proper subspace tobe compatible. The existence of non-compatible proper subspaces is related to spectralproperties of symmetrizable operators. Each proper subspace S has a supplement T whichis also a proper subspace.We give a characterization of the compatibility of both subspacesS and T . Several examples are provided that illustrate dierent situations between properand compatible subspacesFil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaPolish Acad Sciences Inst Mathematics2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18930Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Proper subspaces and compatibility; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 231; 3; 12-2015; 195-2180039-3223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.4064/sm8225-2-2016info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/231/3/91441/proper-subspaces-and-compatibilityinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00596info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:35Zoai:ri.conicet.gov.ar:11336/18930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:35.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Proper subspaces and compatibility |
title |
Proper subspaces and compatibility |
spellingShingle |
Proper subspaces and compatibility Andruchow, Esteban PROJECTION COMPATIBLE SUBSPACE PROPER OPERATOR SPECTRUM |
title_short |
Proper subspaces and compatibility |
title_full |
Proper subspaces and compatibility |
title_fullStr |
Proper subspaces and compatibility |
title_full_unstemmed |
Proper subspaces and compatibility |
title_sort |
Proper subspaces and compatibility |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Chiumiento, Eduardo Hernan Di Iorio y Lucero, María Eugenia |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Chiumiento, Eduardo Hernan Di Iorio y Lucero, María Eugenia |
author_role |
author |
author2 |
Chiumiento, Eduardo Hernan Di Iorio y Lucero, María Eugenia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
PROJECTION COMPATIBLE SUBSPACE PROPER OPERATOR SPECTRUM |
topic |
PROJECTION COMPATIBLE SUBSPACE PROPER OPERATOR SPECTRUM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let E be a Banach space contained in a Hilbert space L. Assume thatthe inclusion is continuous with dense range. Following the terminology of Gohberg andZambicki, we say that a bounded operator on E is a proper operator if it admits anadjoint with respect to the inner product of L. A proper operator which is self-adjointwith respect to the inner product of L is called symmetrizable. By a proper subspace Swe mean a closed subspace of E which is the range of a proper projection. Furthermore,if there exists a symmetrizable projection onto S, then S belongs to a well-known class ofsubspaces called compatible subspaces. We nd equivalent conditions to describe propersubspaces. Then we prove a necessary and sucient condition for a proper subspace tobe compatible. The existence of non-compatible proper subspaces is related to spectralproperties of symmetrizable operators. Each proper subspace S has a supplement T whichis also a proper subspace.We give a characterization of the compatibility of both subspacesS and T . Several examples are provided that illustrate dierent situations between properand compatible subspaces Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
Let E be a Banach space contained in a Hilbert space L. Assume thatthe inclusion is continuous with dense range. Following the terminology of Gohberg andZambicki, we say that a bounded operator on E is a proper operator if it admits anadjoint with respect to the inner product of L. A proper operator which is self-adjointwith respect to the inner product of L is called symmetrizable. By a proper subspace Swe mean a closed subspace of E which is the range of a proper projection. Furthermore,if there exists a symmetrizable projection onto S, then S belongs to a well-known class ofsubspaces called compatible subspaces. We nd equivalent conditions to describe propersubspaces. Then we prove a necessary and sucient condition for a proper subspace tobe compatible. The existence of non-compatible proper subspaces is related to spectralproperties of symmetrizable operators. Each proper subspace S has a supplement T whichis also a proper subspace.We give a characterization of the compatibility of both subspacesS and T . Several examples are provided that illustrate dierent situations between properand compatible subspaces |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18930 Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Proper subspaces and compatibility; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 231; 3; 12-2015; 195-218 0039-3223 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18930 |
identifier_str_mv |
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Proper subspaces and compatibility; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 231; 3; 12-2015; 195-218 0039-3223 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ 10.4064/sm8225-2-2016 info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/231/3/91441/proper-subspaces-and-compatibility info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00596 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Polish Acad Sciences Inst Mathematics |
publisher.none.fl_str_mv |
Polish Acad Sciences Inst Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614495946670080 |
score |
13.070432 |