Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
- Autores
- Levis, Fabián Eduardo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0.
Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina - Materia
-
ORLICZ-LORENTZ SPACES
MAXIMAL FUNCTIONS
BEST CONTANT APPROXIMANT
A. E. CONVERGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109833
Ver los metadatos del registro completo
id |
CONICETDig_b8a2894868b1561b1f0c46cdbb66f5ef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109833 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applicationsLevis, Fabián EduardoORLICZ-LORENTZ SPACESMAXIMAL FUNCTIONSBEST CONTANT APPROXIMANTA. E. CONVERGENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0.Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109833Levis, Fabián Eduardo; Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 162; 2; 2-2010; 239-2510021-9045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jat.2009.04.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904509000926info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:42Zoai:ri.conicet.gov.ar:11336/109833instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:43.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications |
title |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications |
spellingShingle |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications Levis, Fabián Eduardo ORLICZ-LORENTZ SPACES MAXIMAL FUNCTIONS BEST CONTANT APPROXIMANT A. E. CONVERGENCE |
title_short |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications |
title_full |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications |
title_fullStr |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications |
title_full_unstemmed |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications |
title_sort |
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications |
dc.creator.none.fl_str_mv |
Levis, Fabián Eduardo |
author |
Levis, Fabián Eduardo |
author_facet |
Levis, Fabián Eduardo |
author_role |
author |
dc.subject.none.fl_str_mv |
ORLICZ-LORENTZ SPACES MAXIMAL FUNCTIONS BEST CONTANT APPROXIMANT A. E. CONVERGENCE |
topic |
ORLICZ-LORENTZ SPACES MAXIMAL FUNCTIONS BEST CONTANT APPROXIMANT A. E. CONVERGENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0. Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina |
description |
Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109833 Levis, Fabián Eduardo; Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 162; 2; 2-2010; 239-251 0021-9045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/109833 |
identifier_str_mv |
Levis, Fabián Eduardo; Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 162; 2; 2-2010; 239-251 0021-9045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jat.2009.04.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904509000926 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269536692207616 |
score |
13.13397 |