Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications

Autores
Levis, Fabián Eduardo
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0.
Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Materia
ORLICZ-LORENTZ SPACES
MAXIMAL FUNCTIONS
BEST CONTANT APPROXIMANT
A. E. CONVERGENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/109833

id CONICETDig_b8a2894868b1561b1f0c46cdbb66f5ef
oai_identifier_str oai:ri.conicet.gov.ar:11336/109833
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applicationsLevis, Fabián EduardoORLICZ-LORENTZ SPACESMAXIMAL FUNCTIONSBEST CONTANT APPROXIMANTA. E. CONVERGENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0.Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109833Levis, Fabián Eduardo; Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 162; 2; 2-2010; 239-2510021-9045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jat.2009.04.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904509000926info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:42Zoai:ri.conicet.gov.ar:11336/109833instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:43.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
title Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
spellingShingle Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
Levis, Fabián Eduardo
ORLICZ-LORENTZ SPACES
MAXIMAL FUNCTIONS
BEST CONTANT APPROXIMANT
A. E. CONVERGENCE
title_short Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
title_full Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
title_fullStr Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
title_full_unstemmed Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
title_sort Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
dc.creator.none.fl_str_mv Levis, Fabián Eduardo
author Levis, Fabián Eduardo
author_facet Levis, Fabián Eduardo
author_role author
dc.subject.none.fl_str_mv ORLICZ-LORENTZ SPACES
MAXIMAL FUNCTIONS
BEST CONTANT APPROXIMANT
A. E. CONVERGENCE
topic ORLICZ-LORENTZ SPACES
MAXIMAL FUNCTIONS
BEST CONTANT APPROXIMANT
A. E. CONVERGENCE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0.
Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
description Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0.
publishDate 2010
dc.date.none.fl_str_mv 2010-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/109833
Levis, Fabián Eduardo; Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 162; 2; 2-2010; 239-251
0021-9045
CONICET Digital
CONICET
url http://hdl.handle.net/11336/109833
identifier_str_mv Levis, Fabián Eduardo; Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 162; 2; 2-2010; 239-251
0021-9045
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jat.2009.04.005
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904509000926
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269536692207616
score 13.13397