A general SOS theory for the specification of probabilistic transition systems

Autores
D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article focuses on the formalization of the structured operational semantics approach for languages with primitives that introduce probabilistic and non-deterministic behavior. We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation is the coarsest congruence included in trace equivalence for any operator definable within the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation guaranteed by the format). We also provide a conservative extension theorem and show that languages that include primitives for exponentially distributed time behavior (such as IMC and Markov automata based language) fit naturally within our framework.
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gebler, Daniel. Vrije Universiteit Amsterdam; Países Bajos
Fil: Lee, Matias David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
SOS
PROBABILISTIC TRANSITION SYSTEMS
BISIMULACION
CONGRUENCE
RULE FORMAT
FULL ABSTRACTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/156111

id CONICETDig_91358cfa954444bcf7baf0b5a855b25f
oai_identifier_str oai:ri.conicet.gov.ar:11336/156111
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A general SOS theory for the specification of probabilistic transition systemsD'argenio, Pedro RubenGebler, DanielLee, Matias DavidSOSPROBABILISTIC TRANSITION SYSTEMSBISIMULACIONCONGRUENCERULE FORMATFULL ABSTRACTIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This article focuses on the formalization of the structured operational semantics approach for languages with primitives that introduce probabilistic and non-deterministic behavior. We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation is the coarsest congruence included in trace equivalence for any operator definable within the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation guaranteed by the format). We also provide a conservative extension theorem and show that languages that include primitives for exponentially distributed time behavior (such as IMC and Markov automata based language) fit naturally within our framework.Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gebler, Daniel. Vrije Universiteit Amsterdam; Países BajosFil: Lee, Matias David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/156111D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; A general SOS theory for the specification of probabilistic transition systems; Academic Press Inc Elsevier Science; Information and Computation; 249; 3-2016; 76-1090890-5401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2016.03.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540116000468info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:58Zoai:ri.conicet.gov.ar:11336/156111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:58.757CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A general SOS theory for the specification of probabilistic transition systems
title A general SOS theory for the specification of probabilistic transition systems
spellingShingle A general SOS theory for the specification of probabilistic transition systems
D'argenio, Pedro Ruben
SOS
PROBABILISTIC TRANSITION SYSTEMS
BISIMULACION
CONGRUENCE
RULE FORMAT
FULL ABSTRACTION
title_short A general SOS theory for the specification of probabilistic transition systems
title_full A general SOS theory for the specification of probabilistic transition systems
title_fullStr A general SOS theory for the specification of probabilistic transition systems
title_full_unstemmed A general SOS theory for the specification of probabilistic transition systems
title_sort A general SOS theory for the specification of probabilistic transition systems
dc.creator.none.fl_str_mv D'argenio, Pedro Ruben
Gebler, Daniel
Lee, Matias David
author D'argenio, Pedro Ruben
author_facet D'argenio, Pedro Ruben
Gebler, Daniel
Lee, Matias David
author_role author
author2 Gebler, Daniel
Lee, Matias David
author2_role author
author
dc.subject.none.fl_str_mv SOS
PROBABILISTIC TRANSITION SYSTEMS
BISIMULACION
CONGRUENCE
RULE FORMAT
FULL ABSTRACTION
topic SOS
PROBABILISTIC TRANSITION SYSTEMS
BISIMULACION
CONGRUENCE
RULE FORMAT
FULL ABSTRACTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This article focuses on the formalization of the structured operational semantics approach for languages with primitives that introduce probabilistic and non-deterministic behavior. We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation is the coarsest congruence included in trace equivalence for any operator definable within the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation guaranteed by the format). We also provide a conservative extension theorem and show that languages that include primitives for exponentially distributed time behavior (such as IMC and Markov automata based language) fit naturally within our framework.
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gebler, Daniel. Vrije Universiteit Amsterdam; Países Bajos
Fil: Lee, Matias David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This article focuses on the formalization of the structured operational semantics approach for languages with primitives that introduce probabilistic and non-deterministic behavior. We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation is the coarsest congruence included in trace equivalence for any operator definable within the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation guaranteed by the format). We also provide a conservative extension theorem and show that languages that include primitives for exponentially distributed time behavior (such as IMC and Markov automata based language) fit naturally within our framework.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/156111
D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; A general SOS theory for the specification of probabilistic transition systems; Academic Press Inc Elsevier Science; Information and Computation; 249; 3-2016; 76-109
0890-5401
CONICET Digital
CONICET
url http://hdl.handle.net/11336/156111
identifier_str_mv D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; A general SOS theory for the specification of probabilistic transition systems; Academic Press Inc Elsevier Science; Information and Computation; 249; 3-2016; 76-109
0890-5401
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2016.03.009
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540116000468
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269127508492288
score 13.13397