A general SOS theory for the specification of probabilistic transition systems
- Autores
- D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article focuses on the formalization of the structured operational semantics approach for languages with primitives that introduce probabilistic and non-deterministic behavior. We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation is the coarsest congruence included in trace equivalence for any operator definable within the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation guaranteed by the format). We also provide a conservative extension theorem and show that languages that include primitives for exponentially distributed time behavior (such as IMC and Markov automata based language) fit naturally within our framework.
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gebler, Daniel. Vrije Universiteit Amsterdam; Países Bajos
Fil: Lee, Matias David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
SOS
PROBABILISTIC TRANSITION SYSTEMS
BISIMULACION
CONGRUENCE
RULE FORMAT
FULL ABSTRACTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/156111
Ver los metadatos del registro completo
id |
CONICETDig_91358cfa954444bcf7baf0b5a855b25f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/156111 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A general SOS theory for the specification of probabilistic transition systemsD'argenio, Pedro RubenGebler, DanielLee, Matias DavidSOSPROBABILISTIC TRANSITION SYSTEMSBISIMULACIONCONGRUENCERULE FORMATFULL ABSTRACTIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This article focuses on the formalization of the structured operational semantics approach for languages with primitives that introduce probabilistic and non-deterministic behavior. We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation is the coarsest congruence included in trace equivalence for any operator definable within the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation guaranteed by the format). We also provide a conservative extension theorem and show that languages that include primitives for exponentially distributed time behavior (such as IMC and Markov automata based language) fit naturally within our framework.Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gebler, Daniel. Vrije Universiteit Amsterdam; Países BajosFil: Lee, Matias David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/156111D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; A general SOS theory for the specification of probabilistic transition systems; Academic Press Inc Elsevier Science; Information and Computation; 249; 3-2016; 76-1090890-5401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2016.03.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540116000468info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:58Zoai:ri.conicet.gov.ar:11336/156111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:58.757CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A general SOS theory for the specification of probabilistic transition systems |
title |
A general SOS theory for the specification of probabilistic transition systems |
spellingShingle |
A general SOS theory for the specification of probabilistic transition systems D'argenio, Pedro Ruben SOS PROBABILISTIC TRANSITION SYSTEMS BISIMULACION CONGRUENCE RULE FORMAT FULL ABSTRACTION |
title_short |
A general SOS theory for the specification of probabilistic transition systems |
title_full |
A general SOS theory for the specification of probabilistic transition systems |
title_fullStr |
A general SOS theory for the specification of probabilistic transition systems |
title_full_unstemmed |
A general SOS theory for the specification of probabilistic transition systems |
title_sort |
A general SOS theory for the specification of probabilistic transition systems |
dc.creator.none.fl_str_mv |
D'argenio, Pedro Ruben Gebler, Daniel Lee, Matias David |
author |
D'argenio, Pedro Ruben |
author_facet |
D'argenio, Pedro Ruben Gebler, Daniel Lee, Matias David |
author_role |
author |
author2 |
Gebler, Daniel Lee, Matias David |
author2_role |
author author |
dc.subject.none.fl_str_mv |
SOS PROBABILISTIC TRANSITION SYSTEMS BISIMULACION CONGRUENCE RULE FORMAT FULL ABSTRACTION |
topic |
SOS PROBABILISTIC TRANSITION SYSTEMS BISIMULACION CONGRUENCE RULE FORMAT FULL ABSTRACTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This article focuses on the formalization of the structured operational semantics approach for languages with primitives that introduce probabilistic and non-deterministic behavior. We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation is the coarsest congruence included in trace equivalence for any operator definable within the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation guaranteed by the format). We also provide a conservative extension theorem and show that languages that include primitives for exponentially distributed time behavior (such as IMC and Markov automata based language) fit naturally within our framework. Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gebler, Daniel. Vrije Universiteit Amsterdam; Países Bajos Fil: Lee, Matias David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This article focuses on the formalization of the structured operational semantics approach for languages with primitives that introduce probabilistic and non-deterministic behavior. We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation is the coarsest congruence included in trace equivalence for any operator definable within the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation guaranteed by the format). We also provide a conservative extension theorem and show that languages that include primitives for exponentially distributed time behavior (such as IMC and Markov automata based language) fit naturally within our framework. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/156111 D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; A general SOS theory for the specification of probabilistic transition systems; Academic Press Inc Elsevier Science; Information and Computation; 249; 3-2016; 76-109 0890-5401 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/156111 |
identifier_str_mv |
D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; A general SOS theory for the specification of probabilistic transition systems; Academic Press Inc Elsevier Science; Information and Computation; 249; 3-2016; 76-109 0890-5401 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2016.03.009 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540116000468 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269127508492288 |
score |
13.13397 |