Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization

Autores
Figueira, Diego; Figueira, Santiago; Areces, Carlos Eduardo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain.We provide notions of (bi)simulations for XPath logics containing the child, descendant, parent and ancestor axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show char- acterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees.Besides their intrinsic theoretical value, we argue that bisimulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples.
Fil: Figueira, Diego. Centre National de la Recherche Scientifique; Francia
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
XPath
Bisimulación
Caracterización
Expresividad
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44354

id CONICETDig_ef00a378694500146ae52ccc16b0e49b
oai_identifier_str oai:ri.conicet.gov.ar:11336/44354
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Model Theory of XPath on Data Trees: Part I: Bisimulation and CharacterizationFigueira, DiegoFigueira, SantiagoAreces, Carlos EduardoXPathBisimulaciónCaracterizaciónExpresividadhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain.We provide notions of (bi)simulations for XPath logics containing the child, descendant, parent and ancestor axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show char- acterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees.Besides their intrinsic theoretical value, we argue that bisimulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples.Fil: Figueira, Diego. Centre National de la Recherche Scientifique; FranciaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAI Access Foundation2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44354Figueira, Diego; Figueira, Santiago; Areces, Carlos Eduardo; Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization; AI Access Foundation; Journal of Artificial Intelligence Research; 53; 7-2015; 271-3141076-97571943-5037CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jair.org/index.php/jair/article/view/10945info:eu-repo/semantics/altIdentifier/doi/10.1613/jair.4658info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:34Zoai:ri.conicet.gov.ar:11336/44354instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:34.502CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
title Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
spellingShingle Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
Figueira, Diego
XPath
Bisimulación
Caracterización
Expresividad
title_short Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
title_full Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
title_fullStr Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
title_full_unstemmed Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
title_sort Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
dc.creator.none.fl_str_mv Figueira, Diego
Figueira, Santiago
Areces, Carlos Eduardo
author Figueira, Diego
author_facet Figueira, Diego
Figueira, Santiago
Areces, Carlos Eduardo
author_role author
author2 Figueira, Santiago
Areces, Carlos Eduardo
author2_role author
author
dc.subject.none.fl_str_mv XPath
Bisimulación
Caracterización
Expresividad
topic XPath
Bisimulación
Caracterización
Expresividad
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain.We provide notions of (bi)simulations for XPath logics containing the child, descendant, parent and ancestor axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show char- acterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees.Besides their intrinsic theoretical value, we argue that bisimulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples.
Fil: Figueira, Diego. Centre National de la Recherche Scientifique; Francia
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain.We provide notions of (bi)simulations for XPath logics containing the child, descendant, parent and ancestor axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show char- acterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees.Besides their intrinsic theoretical value, we argue that bisimulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44354
Figueira, Diego; Figueira, Santiago; Areces, Carlos Eduardo; Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization; AI Access Foundation; Journal of Artificial Intelligence Research; 53; 7-2015; 271-314
1076-9757
1943-5037
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44354
identifier_str_mv Figueira, Diego; Figueira, Santiago; Areces, Carlos Eduardo; Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization; AI Access Foundation; Journal of Artificial Intelligence Research; 53; 7-2015; 271-314
1076-9757
1943-5037
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://jair.org/index.php/jair/article/view/10945
info:eu-repo/semantics/altIdentifier/doi/10.1613/jair.4658
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv AI Access Foundation
publisher.none.fl_str_mv AI Access Foundation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269588228669440
score 13.13397