Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization
- Autores
- Figueira, Diego; Figueira, Santiago; Areces, Carlos Eduardo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain.We provide notions of (bi)simulations for XPath logics containing the child, descendant, parent and ancestor axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show char- acterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees.Besides their intrinsic theoretical value, we argue that bisimulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples.
Fil: Figueira, Diego. Centre National de la Recherche Scientifique; Francia
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
XPath
Bisimulación
Caracterización
Expresividad - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44354
Ver los metadatos del registro completo
id |
CONICETDig_ef00a378694500146ae52ccc16b0e49b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44354 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Model Theory of XPath on Data Trees: Part I: Bisimulation and CharacterizationFigueira, DiegoFigueira, SantiagoAreces, Carlos EduardoXPathBisimulaciónCaracterizaciónExpresividadhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain.We provide notions of (bi)simulations for XPath logics containing the child, descendant, parent and ancestor axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show char- acterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees.Besides their intrinsic theoretical value, we argue that bisimulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples.Fil: Figueira, Diego. Centre National de la Recherche Scientifique; FranciaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAI Access Foundation2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44354Figueira, Diego; Figueira, Santiago; Areces, Carlos Eduardo; Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization; AI Access Foundation; Journal of Artificial Intelligence Research; 53; 7-2015; 271-3141076-97571943-5037CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jair.org/index.php/jair/article/view/10945info:eu-repo/semantics/altIdentifier/doi/10.1613/jair.4658info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:34Zoai:ri.conicet.gov.ar:11336/44354instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:34.502CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization |
title |
Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization |
spellingShingle |
Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization Figueira, Diego XPath Bisimulación Caracterización Expresividad |
title_short |
Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization |
title_full |
Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization |
title_fullStr |
Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization |
title_full_unstemmed |
Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization |
title_sort |
Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization |
dc.creator.none.fl_str_mv |
Figueira, Diego Figueira, Santiago Areces, Carlos Eduardo |
author |
Figueira, Diego |
author_facet |
Figueira, Diego Figueira, Santiago Areces, Carlos Eduardo |
author_role |
author |
author2 |
Figueira, Santiago Areces, Carlos Eduardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
XPath Bisimulación Caracterización Expresividad |
topic |
XPath Bisimulación Caracterización Expresividad |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain.We provide notions of (bi)simulations for XPath logics containing the child, descendant, parent and ancestor axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show char- acterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees.Besides their intrinsic theoretical value, we argue that bisimulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples. Fil: Figueira, Diego. Centre National de la Recherche Scientifique; Francia Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain.We provide notions of (bi)simulations for XPath logics containing the child, descendant, parent and ancestor axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show char- acterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees.Besides their intrinsic theoretical value, we argue that bisimulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44354 Figueira, Diego; Figueira, Santiago; Areces, Carlos Eduardo; Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization; AI Access Foundation; Journal of Artificial Intelligence Research; 53; 7-2015; 271-314 1076-9757 1943-5037 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44354 |
identifier_str_mv |
Figueira, Diego; Figueira, Santiago; Areces, Carlos Eduardo; Model Theory of XPath on Data Trees: Part I: Bisimulation and Characterization; AI Access Foundation; Journal of Artificial Intelligence Research; 53; 7-2015; 271-314 1076-9757 1943-5037 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://jair.org/index.php/jair/article/view/10945 info:eu-repo/semantics/altIdentifier/doi/10.1613/jair.4658 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
AI Access Foundation |
publisher.none.fl_str_mv |
AI Access Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269588228669440 |
score |
13.13397 |