Robust estimators in a generalized partly linear regression model under monotony constraints
- Autores
- Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vena, Pablo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
B-SPLINES
DEVIANCE
ISOTONIC REGRESSION
PARTIAL LINEAR MODELS
ROBUST ESTIMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113242
Ver los metadatos del registro completo
id |
CONICETDig_847e45727db1422368be90ca80709f9f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113242 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust estimators in a generalized partly linear regression model under monotony constraintsBoente Boente, Graciela LinaRodriguez, Daniela AndreaVena, Pablo ClaudioB-SPLINESDEVIANCEISOTONIC REGRESSIONPARTIAL LINEAR MODELSROBUST ESTIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vena, Pablo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113242Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio; Robust estimators in a generalized partly linear regression model under monotony constraints; Springer; Test; 29; 1; 2-2019; 1-361133-0686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-019-00629-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-019-00629-7info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1802.07998info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:25Zoai:ri.conicet.gov.ar:11336/113242instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:25.356CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust estimators in a generalized partly linear regression model under monotony constraints |
title |
Robust estimators in a generalized partly linear regression model under monotony constraints |
spellingShingle |
Robust estimators in a generalized partly linear regression model under monotony constraints Boente Boente, Graciela Lina B-SPLINES DEVIANCE ISOTONIC REGRESSION PARTIAL LINEAR MODELS ROBUST ESTIMATION |
title_short |
Robust estimators in a generalized partly linear regression model under monotony constraints |
title_full |
Robust estimators in a generalized partly linear regression model under monotony constraints |
title_fullStr |
Robust estimators in a generalized partly linear regression model under monotony constraints |
title_full_unstemmed |
Robust estimators in a generalized partly linear regression model under monotony constraints |
title_sort |
Robust estimators in a generalized partly linear regression model under monotony constraints |
dc.creator.none.fl_str_mv |
Boente Boente, Graciela Lina Rodriguez, Daniela Andrea Vena, Pablo Claudio |
author |
Boente Boente, Graciela Lina |
author_facet |
Boente Boente, Graciela Lina Rodriguez, Daniela Andrea Vena, Pablo Claudio |
author_role |
author |
author2 |
Rodriguez, Daniela Andrea Vena, Pablo Claudio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
B-SPLINES DEVIANCE ISOTONIC REGRESSION PARTIAL LINEAR MODELS ROBUST ESTIMATION |
topic |
B-SPLINES DEVIANCE ISOTONIC REGRESSION PARTIAL LINEAR MODELS ROBUST ESTIMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set. Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vena, Pablo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113242 Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio; Robust estimators in a generalized partly linear regression model under monotony constraints; Springer; Test; 29; 1; 2-2019; 1-36 1133-0686 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113242 |
identifier_str_mv |
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio; Robust estimators in a generalized partly linear regression model under monotony constraints; Springer; Test; 29; 1; 2-2019; 1-36 1133-0686 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-019-00629-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-019-00629-7 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1802.07998 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268729918881792 |
score |
13.13397 |