Robust estimators in a generalized partly linear regression model under monotony constraints

Autores
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vena, Pablo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
B-SPLINES
DEVIANCE
ISOTONIC REGRESSION
PARTIAL LINEAR MODELS
ROBUST ESTIMATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113242

id CONICETDig_847e45727db1422368be90ca80709f9f
oai_identifier_str oai:ri.conicet.gov.ar:11336/113242
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust estimators in a generalized partly linear regression model under monotony constraintsBoente Boente, Graciela LinaRodriguez, Daniela AndreaVena, Pablo ClaudioB-SPLINESDEVIANCEISOTONIC REGRESSIONPARTIAL LINEAR MODELSROBUST ESTIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vena, Pablo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113242Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio; Robust estimators in a generalized partly linear regression model under monotony constraints; Springer; Test; 29; 1; 2-2019; 1-361133-0686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-019-00629-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-019-00629-7info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1802.07998info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:25Zoai:ri.conicet.gov.ar:11336/113242instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:25.356CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust estimators in a generalized partly linear regression model under monotony constraints
title Robust estimators in a generalized partly linear regression model under monotony constraints
spellingShingle Robust estimators in a generalized partly linear regression model under monotony constraints
Boente Boente, Graciela Lina
B-SPLINES
DEVIANCE
ISOTONIC REGRESSION
PARTIAL LINEAR MODELS
ROBUST ESTIMATION
title_short Robust estimators in a generalized partly linear regression model under monotony constraints
title_full Robust estimators in a generalized partly linear regression model under monotony constraints
title_fullStr Robust estimators in a generalized partly linear regression model under monotony constraints
title_full_unstemmed Robust estimators in a generalized partly linear regression model under monotony constraints
title_sort Robust estimators in a generalized partly linear regression model under monotony constraints
dc.creator.none.fl_str_mv Boente Boente, Graciela Lina
Rodriguez, Daniela Andrea
Vena, Pablo Claudio
author Boente Boente, Graciela Lina
author_facet Boente Boente, Graciela Lina
Rodriguez, Daniela Andrea
Vena, Pablo Claudio
author_role author
author2 Rodriguez, Daniela Andrea
Vena, Pablo Claudio
author2_role author
author
dc.subject.none.fl_str_mv B-SPLINES
DEVIANCE
ISOTONIC REGRESSION
PARTIAL LINEAR MODELS
ROBUST ESTIMATION
topic B-SPLINES
DEVIANCE
ISOTONIC REGRESSION
PARTIAL LINEAR MODELS
ROBUST ESTIMATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vena, Pablo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113242
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio; Robust estimators in a generalized partly linear regression model under monotony constraints; Springer; Test; 29; 1; 2-2019; 1-36
1133-0686
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113242
identifier_str_mv Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio; Robust estimators in a generalized partly linear regression model under monotony constraints; Springer; Test; 29; 1; 2-2019; 1-36
1133-0686
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-019-00629-7
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-019-00629-7
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1802.07998
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268729918881792
score 13.13397